
A Maui User's Guide

Next: 1. Getting Started

A Maui User's Guide
Paul Boggs

Leslea Lehoucq
Kevin Long

Andrew Rothfuss
Edward Walsh

Robert Whiteside

Abstract:

Maui is a program that automatically builds a GUI for a problem given a high-level specification of the
problem's data structures and methods. This guide is intended to show GUI developers how to use Maui
to design effective GUIs for applications.

● 1. Getting Started
❍ 1.1 Installation Instructions

■ 1.1.1 System Requirements
■ 1.1.2 Installing Java
■ 1.1.3 Installing Ant
■ 1.1.4 Downloading MAUI
■ 1.1.5 UNIX/LINUX Installation

■ 1.1.5.1 Installing MAUI on UNIX/LINUX
■ 1.1.5.2 Troubleshooting the installation on UNIX/LINUX

■ 1.1.6 Windows Installation
■ 1.1.6.1 Installing MAUI on Windows
■ 1.1.6.2 Troubleshooting the installation on Windows

❍ 1.2 Running Maui

● 2. How to Design Maui Objects

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/index.html (1 of 5) [8/8/2003 4:02:30 PM]

A Maui User's Guide

❍ 2.1 Introduction
❍ 2.2 The Basics
❍ 2.3 Maui Primitives
❍ 2.4 Classes as Fields
❍ 2.5 Using Subclasses to Represent Choices

■ 2.5.1 Data Representation
■ 2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes
■ 2.5.3 Labeling in the Subclass Menu

❍ 2.6 Arrays
■ 2.6.1 The Master Block
■ 2.6.2 Other Array Options

❍ 2.7 Tables
❍ 2.8 References
❍ 2.9 Maui help buttons
❍ 2.10 Summary of Maui

● 3. Actions
❍ 3.1 Introduction
❍ 3.2 XML for Specifying an Action

■ 3.2.1 Maui Compressed XML
■ 3.2.2 Maui Verbose XML
■ 3.2.3 Maui Built-In Actions

❍ 3.3 Writing Your Own Actions
■ 3.3.1 The XMLObject Class
■ 3.3.2 Example of a Custom Maui Action
■ 3.3.3 Compiling Your Action
■ 3.3.4 Configuring Maui to Find Your Action

❍ 3.4 Suggested Exercises
❍ 3.5 Summary

● 4. Custom Editors
❍ 4.1 Introduction
❍ 4.2 Using a Custom Editor: The FilenameEditor for Strings
❍ 4.3 Writing Your Own Custom Editors

■ 4.3.1 The Structure of Maui Data
■ 4.3.2 Steps to Writing Your Own Custom Editor
■ 4.3.3 Example of a Maui Custom Editor
■ 4.3.4 Compiling Your Custom Editor
■ 4.3.5 Configuring Maui to Find Your Custom Editor

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/index.html (2 of 5) [8/8/2003 4:02:30 PM]

A Maui User's Guide

❍ 4.4 Summary

● 5. Configuring Maui
❍ 5.1 Introduction
❍ 5.2 Appearance Settings
❍ 5.3 Services
❍ 5.4 Paths and Packages

■ 5.4.1 Configuring with the Configure Maui Button
■ 5.4.2 The ``Do Nothing'' Configuration Method
■ 5.4.3 Configuring in Your XML Specification

● A. Application Example
❍ A.1 A Calore GUI

■ A.1.1 Differences Between Text and GUI Calore Input
■ A.1.2 Calore GUI Design Examples

■ A.1.2.1 Array Example
■ A.1.2.2 Optional Fields Example
■ A.1.2.3 Subclassing Example
■ A.1.2.4 Referencing Example
■ A.1.2.5 Import Example
■ A.1.2.6 String Menu Example

❍ A.2 Text Input to Calore

● B. Maui XML syntax guide
❍ B.1 Tag Maui

■ B.1.1 Children allowed in Maui elements
■ B.1.2 Attributes allowed in Maui elements

❍ B.2 Tag Class
■ B.2.1 Children allowed in Class elements
■ B.2.2 Attributes allowed in Class elements

❍ B.3 Tag Import
■ B.3.1 Children allowed in Import elements
■ B.3.2 Attributes allowed in Import elements

❍ B.4 Tag Fields
■ B.4.1 Children allowed in Fields elements
■ B.4.2 Attributes allowed in Fields elements

❍ B.5 Tag AppData
■ B.5.1 Children allowed in AppData elements
■ B.5.2 Attributes allowed in AppData elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/index.html (3 of 5) [8/8/2003 4:02:30 PM]

A Maui User's Guide

❍ B.6 Tag Action
■ B.6.1 Children allowed in Action elements
■ B.6.2 Attributes allowed in Action elements

❍ B.7 Tag CustomEditor
■ B.7.1 Children allowed in CustomEditor elements
■ B.7.2 Attributes allowed in CustomEditor elements

❍ B.8 Tag Integer
■ B.8.1 Children allowed in Integer elements
■ B.8.2 Attributes allowed in Integer elements

❍ B.9 Tag Double
■ B.9.1 Children allowed in Double elements
■ B.9.2 Attributes allowed in Double elements

❍ B.10 Tag Boolean
■ B.10.1 Children allowed in Boolean elements
■ B.10.2 Attributes allowed in Boolean elements

❍ B.11 Tag String
■ B.11.1 Children allowed in String elements
■ B.11.2 Attributes allowed in String elements

❍ B.12 Tag Array
■ B.12.1 Children allowed in Array elements
■ B.12.2 Attributes allowed in Array elements

❍ B.13 Tag Table
■ B.13.1 Children allowed in Table elements
■ B.13.2 Attributes allowed in Table elements

❍ B.14 Tag Reference
■ B.14.1 Children allowed in Reference elements
■ B.14.2 Attributes allowed in Reference elements

❍ B.15 Tag Comment
■ B.15.1 Children allowed in Comment elements
■ B.15.2 Attributes allowed in Comment elements

❍ B.16 Tag Menu
■ B.16.1 Children allowed in Menu elements
■ B.16.2 Attributes allowed in Menu elements

❍ B.17 Tag Master
■ B.17.1 Children allowed in Master elements
■ B.17.2 Attributes allowed in Master elements

❍ B.18 Tag Contents
■ B.18.1 Children allowed in Contents elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/index.html (4 of 5) [8/8/2003 4:02:30 PM]

A Maui User's Guide

■ B.18.2 Attributes allowed in Contents elements
❍ B.19 Tag Item

■ B.19.1 Children allowed in Item elements
■ B.19.2 Attributes allowed in Item elements

❍ B.20 Tag Header
■ B.20.1 Children allowed in Header elements
■ B.20.2 Attributes allowed in Header elements

❍ B.21 Tag Entries
■ B.21.1 Children allowed in Entries elements
■ B.21.2 Attributes allowed in Entries elements

❍ B.22 Tag Entry
■ B.22.1 Children allowed in Entry elements
■ B.22.2 Attributes allowed in Entry elements

❍ B.23 Tag Cell
■ B.23.1 Children allowed in Cell elements
■ B.23.2 Attributes allowed in Cell elements

❍ B.24 Tag type_name
■ B.24.1 Children allowed in type_name elements
■ B.24.2 Attributes allowed in type_name elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/index.html (5 of 5) [8/8/2003 4:02:30 PM]

1. Getting Started

Next: 1.1 Installation Instructions Up: A Maui User's Guide Previous: A Maui User's Guide

1. Getting Started
In this chapter we will explain how to configure and build Maui, and how to run a first simple Maui GUI.
The directions are for either a Unix (Linux) or Windows system.

Subsections

● 1.1 Installation Instructions
❍ 1.1.1 System Requirements
❍ 1.1.2 Installing Java
❍ 1.1.3 Installing Ant
❍ 1.1.4 Downloading MAUI
❍ 1.1.5 UNIX/LINUX Installation

■ 1.1.5.1 Installing MAUI on UNIX/LINUX
■ 1.1.5.2 Troubleshooting the installation on UNIX/LINUX

❍ 1.1.6 Windows Installation
■ 1.1.6.1 Installing MAUI on Windows
■ 1.1.6.2 Troubleshooting the installation on Windows

● 1.2 Running Maui

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node1.html [8/8/2003 4:02:30 PM]

1

Next: 1.1.1 System Requirements Up: 1. Getting Started Previous: 1. Getting Started

1.1 Installation Instructions

Subsections

● 1.1.1 System Requirements
● 1.1.2 Installing Java
● 1.1.3 Installing Ant
● 1.1.4 Downloading MAUI
● 1.1.5 UNIX/LINUX Installation

❍ 1.1.5.1 Installing MAUI on UNIX/LINUX
❍ 1.1.5.2 Troubleshooting the installation on UNIX/LINUX

● 1.1.6 Windows Installation
❍ 1.1.6.1 Installing MAUI on Windows
❍ 1.1.6.2 Troubleshooting the installation on Windows

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1_InstallationInstructions.html [8/8/2003 4:02:30 PM]

1

Next: 1.1.2 Installing Java Up: 1.1 Installation Instructions Previous: 1.1 Installation Instructions

1.1.1 System Requirements
MAUI will run on any java enabled platform.

Next: 1.1.2 Installing Java Up: 1.1 Installation Instructions Previous: 1.1 Installation Instructions

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.1_SystemRequirements.html [8/8/2003 4:02:31 PM]

1

Next: 1.1.3 Installing Ant Up: 1.1 Installation Instructions Previous: 1.1.1 System Requirements

1.1.2 Installing Java
To run MAUI, you will need a Java runtime environment (JRE). The JRE should be from Java2
Standard Edition (J2SE) 1.3 or higher version. You can download the latest JRE from www.java.com.

Are you planning on writing custom editors or custom even handlers?
To write custom components, you will need to download and install a Software Development Kit (SDK)
or an equivalent Java development environment. We recommend the SDK from the Java2 Standard
Edition version 1.3 or higher; you can get it at www.java.sun.com.

Next: 1.1.3 Installing Ant Up: 1.1 Installation Instructions Previous: 1.1.1 System Requirements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.2_InstallingJava.html [8/8/2003 4:02:31 PM]

http://www.java.com/
file:///C|/junk/www.java.sun.com

1

Next: 1.1.4 Downloading Maui Up: 1.1 Installation Instructions Previous: 1.1.3 Installing Ant

1.1.3 Installing Ant
Are planning to modify and/or extend the MAUI core?
To edit and re-compile the MAUI core, you will need a build tool such as make or Ant. You can
download Ant at http://ant.apache.org/.

Next: 1.1.4 Downloading Maui Up: 1.1 Installation Instructions Previous: 1.1.3 Installing Ant

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.3_InstallingAnt.html [8/8/2003 4:02:31 PM]

http://ant.apache.org/

1

Next: 1.1.5 UNIX/LINUX Installation Up: 1.1 Installation Instructions Previous: 1.1.3 Installing Ant

1.1.4 Downloading MAUI
You can download MAUI at http://csmr.ca.sandia.gov/projects/maui/download.php. UNIX/LINUX
users should download the file Maui.tgz. Windows users should download the file Maui.zip.

Next: 1.1.5 UNIX/LINUX Installation Up: 1.1 Installation Instructions Previous: 1.1.3 Installing Ant

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.4_DownloadingMaui.html [8/8/2003 4:02:31 PM]

http://csmr.ca.sandia.gov/projects/maui/download.php

1

Next: 1.1.5.1 Installing MAUI Up: 1.1 Installation Instructions Previous: 1.1.4 Downloading Maui

1.1.5 UNIX/LINUX Installation

Subsections

● 1.2.5.1 Installing MAUI on UNIX/LINUX
● 1.2.5.2 Troubleshooting the installation on UNIX/LINUX

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.5_UnixInstallation.htm [8/8/2003 4:02:31 PM]

1

Next: 1.1.5.2 Troubleshooting Up: 1.1.5 UNIX/LINUX Install Previous: 1.1.5 UNIX/LINUX Install

1.1.5.1 Installing Maui on UNIX/LINUX
1. Select a directory (folder) where you want to install Maui.

Download the Maui.tgz file into that directory.
cd to that directory.

2. Unpack Maui.tgz by typing either:

tar xzf Maui.tgz

gunzip Maui.tgz
tar xf Maui.tar

gzip -d Maui.tgz
tar xf Maui.tar

3. Determine which UNIX shell you are currently using. Type the following command:

 echo $SHELL

If you see "/bin/bash" then you are using the bash shell.
If you see "/bin/tcsh" then you are using the tc shell.
If you see "/bin/csh" then you are using the c shell.
If you see "/bin/sh" then you are using the bourne shell.

4. Set the MAUI_HOME environment variable by typing any one of the following commands:

If you running csh or tcsh, use
setenv MAUI_HOME `pwd`/Maui
or
setenv MAUI_HOME <full path to Maui folder>
example: setenv MAUI_HOME /home/MauiUser/Maui

If you running bash or bourne, use
export MAUI_HOME=`pwd`/Maui
or
export MAUI_HOME=<full path to Maui folder>
example: export MAUI_HOME=/home/MauiUser/Maui

Note: These settings are not permanent. To make them permanent, add the appropriate line to

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.5.1_InstallingMauiOnUnix.html (1 of 3) [8/8/2003 4:02:31 PM]

1

your shell's rc file (.cshrc, .tcshrc, .bashrc, .shrc, etc). These files are located in your home
directory.

if you are running csh then edit .cshrc.
setenv MAUI_HOME <full path to Maui folder>
example: setenv MAUI_HOME /home/MauiUser/Maui

if you are running tcsh then edit .tcshrc.
setenv MAUI_HOME <full path to Maui folder>
example: setenv MAUI_HOME /home/MauiUser/Maui

if you are running bash then edit .bashrc
export MAUI_HOME =<full path to Maui folder>
example: export MAUI_HOME= /home/MauiUser/Maui

if you are running bourne then edit shrc
export MAUI_HOME = <full path to Maui folder>
example: export MAUI_HOME= /home/MauiUser/Maui

5. Modify your PATH variable to include the path to the Maui executable commands. Again, the

best way to do this is to modify your shell's rc file. The appropriate line is

 PATH=$MAUI_HOME/Java/bin:$PATH

6. If you modified your shell's rc file then you must either:

logout and log back in

source your shell's rc file
example: source ~/.bashrc

7. Launch Maui by typing this command:

 Maui.e $MAUI_HOME/Java/etc/test.xml

8. At this point, if the MAUI_HOME and PATH variables are set correctly, only one error could
occur. Maui needs to create a local directory in which to store your personal preferences and
settings. This directory is named .mauiConfig. You can find the folder in your home directory.
The only thing that can go wrong here is that permissions are not set to allow Maui to create this
file. This is highly unusual, since you had to have had permission to write files to install Maui, but
if it happens, be sure that the write permissions are set correctly and try again.

To view the write permissions, type this command:

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.5.1_InstallingMauiOnUnix.html (2 of 3) [8/8/2003 4:02:31 PM]

1

 ls -ld ~/.mauiConfig

You should see something that looks like this:

 drwxr-xr-x 1 MauiUser MauiUser 4096 Jul 4 2003

The 3rd character should be a "w", not a "-".
If the 3rd character is a "-" then type this command to fix it:

 chmod +x ~/.mauiConfig

9. When Maui comes up, click on the "Start New Session" button. If all goes well, you will see a
greeting screen with a note to click on "Exit" to quit Maui.

Next: 1.1.5.2 Troubleshooting Up: 1.1.5 UNIX/LINUX Install Previous: 1.1.5 UNIX/LINUX Install

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.5.1_InstallingMauiOnUnix.html (3 of 3) [8/8/2003 4:02:31 PM]

1

Next: 1.1.6 Windows Installation Up: 1.1.5 UJNIX/LINUX Install Previous: 1.1.5.1 Installing MAUI

1.1.5.2 Troubleshooting the installation
on UNIX/LINUX
Do you have a Java Runtime Environment (JRE) installed on your system?
In most LINUX installations, the JRE is optional; i.e. if you did not select a "custom installation" then
the JRE was probably not installed.
To determine if java is installed, type these commands:
 which javac
 whereis javac
 locate bin/javac
If none of these 3 commands can find java, then java was probably not installed.

Can your PATH environment variable find the Java Runtime Environment (JRE)?
To determine if your PATH is ok, type one of these commands:
 printenv PATH
 set | grep PATH
 echo $PATH
 Search for an entry that resembles j2sdk/bin or j2sdk/jre/bin

Do you have the correct version of the Java Runtime Environment (JRE)?
It should be version 1.3 or higher.
It should NOT be version 1.4.0_01; j2sdk1.4.0_01 is full of bugs.
Most LINUX installations come with a version that is much older than 1.3.
To determine which version of java you have, type this command:
 java -version
The response should resemble something similar to "/usr/local/j2sdk1.4.1_01/bin/java". The number after
"j2sdk" should be 1.3 or higher. The number should NOT be 1.4.0_01.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/ma...ial/1.1.5.2_TroubleshootingTheInstallationOnUnix.html (1 of 2) [8/8/2003 4:02:32 PM]

1

Next: 1.1.6 Windows Installation Up: 1.1.5 UJNIX/LINUX Install Previous: 1.1.5.1 Installing MAUI

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/ma...ial/1.1.5.2_TroubleshootingTheInstallationOnUnix.html (2 of 2) [8/8/2003 4:02:32 PM]

1

Next: 1.1.6.1 Installing MAUI Up: 1.1 Installation Instructions Previous: 1.1.5.2 Troubleshooting

1.1.6 Windows Installation

Subsections

● 1.1.6.1 Installing MAUI on Windows
● 1.1.6.2 Troubleshooting the installation on Windows

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.6_WindowsInstallation.htm [8/8/2003 4:02:32 PM]

1

Next: 1.1.6.2 Troubleshooting Up: 1.1.6 Windows Install Previous: 1.1.6 Windows Install

1.1.6.1 Installing Maui on Windows
1. Download Maui.zip

2. Extract the files in Maui.zip to c:\Program File

You can use the unzipping tool of your choice to extract the files from Maui.zip. Use the
unzipping tool to extract the files to "c:\Program Files". Some popular unzipping tools that can be
downloaded from the Web include WinZip, InfoZip, and pcunzip. If you do not have an uzipping
tool, then you may use Java's jar command:

EXAMPLE:
launch a DOS console
> copy Maui.zip c:\Program Files
> cd c:\Program Files
> jar xvf Maui.zip
> del Maui.zip

3. Set the MAUI_HOME variable to c:\Program Files\Maui

Windows 2000:

Launch the Control Panel
Select System
Select Advanced
Select Environment Variables
Click the "New..." button in "User variables"
Type "MAUI_HOME" for the "Variable Name"
Type "c:\Program Files\Maui" for the "Variable Value"
Press the OK button
Close the Environment Variables dialog box

Windows NT:

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.6.1_InstallingMauiOnWindows.html (1 of 4) [8/8/2003 4:02:32 PM]

1

Launch the Control Panel
Select System
Select Environment
Type "MAUI_HOME" for the "Variable"
Type "c:\Program Files\Maui" for "Value"
Click the Set button
Click the OK button
Click the OK button

Windows 98:

Start the system editor:
 Click on the "Start" button in the lower left corner of your screen
 Select "Run"
 Type "sysedit" in the textbox
 Click on the OK button
 Select the "AUTOEXEC.BAT" window
Move your cursor to the bottom of the AUTOEXEC.BAT file
Type this line
 set MAUI_HOME=c:\Program Files\Maui
Close the System Config Editor

4. Set the HOME variable to your profile folder

Windows 2000:

Launch the Control Panel
Select System
Select Advanced
Select Environment Variables
Click the "New..." button in "User variables"
Type "HOME" for the "Variable Name"
Type "c:\Documents and Settings\[your login name]" for the "Variable
Value"
 where [your login name] is the user name you used to login into the
machine.
 EXAMPLE: If your login name is johnDoe then would type
 "c:\Documents and Settings\johnDoe"
Press the OK button
Close the Environment Variables dialog box

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.6.1_InstallingMauiOnWindows.html (2 of 4) [8/8/2003 4:02:32 PM]

1

Windows NT:

Launch the Control Panel
Select System
Select Environment
Type "MAUI_HOME" for the "Variable"
Type "c:\Winnt\profiles\[your login name]" for "Value"
 where [your login name] is the user name you used to login into the
machine.
 EXAMPLE: If your login name is johnDoe then would type
 "c:\Winnt\profiles\johnDoe"
Click the Set button
Click the OK button
Click the OK button

Windows 98:

If you haven't already created a user profile then
 Launch the Control Panel
 Double-click on Users
 A wizard will help you setup a name and password
Start the system editor:
 Click on the "Start" button in the lower left corner of your screen
 Select "Run"
 Type "sysedit" in the textbox
 Click on the OK button
 Select the "AUTOEXEC.BAT" window
Move your cursor to the bottom of the AUTOEXEC.BAT file
Type this line
 set HOME=c:\Windows\profiles\[your login name]
 where [your login name] is the user name you used to login into the
machine.
 EXAMPLE: If your login name is johnDoe then would type
 "c:\Windows\profiles\johnDoe"
Close the System Config Editor

Reboot your Windows 98 machine.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.6.1_InstallingMauiOnWindows.html (3 of 4) [8/8/2003 4:02:32 PM]

1

5. Launch Maui by running Maui.bat

Double click on the file named c:\Program Files\Maui\Java\bin\Maui.bat.

You may also launch Maui from a DOS console:
 Launch a DOS console
 > cd c:\Program Files\Maui\Java\bin
 > Maui.bat

6. When Maui comes up, click on the "Start New Session" button.

Next: 1.1.6.2 Troubleshooting Up: 1.1.6 Windows Install Previous: 1.1.6 Windows Install

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/1.1.6.1_InstallingMauiOnWindows.html (4 of 4) [8/8/2003 4:02:32 PM]

1

Next: 1.2 Running Maui Up: 1.1.6 Windows Install Previous: 1.1.6.1 Installing Maui

1.1.6.2 Troubleshooting the installation
on Windows
Do you have a Java Runtime Environment (JRE) installed on your system?
Microsoft Windows does NOT come with a JRE.
To determine if java is installed, follow these steps:
 open the control panel
 click on "Add/Remove Programs"
 Search for "Java2 Run Time Environment" or "Java2 SDK"

Can your PATH environment variable find the Java Runtime Environment (JRE)?
To determine if your PATH is ok, follow these steps:
 launch a DOS console
 type the command
 java -version
If your path is ok then the response should resemble something similar to
"/usr/local/j2sdk1.4.1_01/bin/java." If your path is not ok then you will see an error message on the
screen (e.g. "command not found").

Do you have the correct version of the Java Runtime Environment (JRE)?
It should be version 1.3 or higher.
It should NOT be version 1.4.0_01; j2sdk1.4.0_01 is full of bugs.
To determine which version of java you have, follow these steps:
 launch a DOS console
 type the command
 java -version
The response should resemble something similar to "/usr/local/j2sdk1.4.1_01/bin/java." The number after
"j2sdk" should be 1.3 or higher. The number should NOT be 1.4.0_01.

Next: 1.2 Running Maui Up: 1.1.6 Windows Install Previous: 1.1.6.1 Installing Maui

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/...ial/1.1.6.2_TroubleshootingTheInstallationOnWindows.html [8/8/2003 4:02:32 PM]

1.1.2 Running Maui

Next: 2. How to Design Up: 1 Getting Started Previous: 1.1.6.2 Troubleshooting

1.2 Running Maui

Maui is Java code, and runs under a Java virtual machine. We have provided a script that takes care of setting the
appropriate arguments for the Java command line. The UNIX shell script is named Maui.e. The windows batch
script is named Maui.bat. All you need do to run Maui is to execute the script with the name of an XML input
file as an argument.

UNIX/LINUX example:
Maui.e MyGUI.xml

Windows example:
Maui.bat MyGUI.xml

The XML input file contains a specification of the GUI to be generated, and the bulk of this tutorial is concerned
with how to write such files.

Let's get started. Figure 1.1 shows the XML input to display a text box in which the user can enter the value of an
integer variable. We will explain what the contents mean later; for now just run Maui. You can type this XML
into a file yourself using your favorite editor, or you can get a copy of the file from
$MAUI_HOME/Doc/tutorials/maui/XML/FirstExample.xml. Once you have created or copied the
file FirstExample.xml, run Maui.e from the command line:

UNIX/LINUX
Maui.e FirstExample.xml

Windows
Maui.bat FirstExample.xml

You should see a window looking like that shown in Figure 1.2.

The XML files for all the examples shown in this tutorial are in the directory
$MAUI_HOME/Doc/tutorial/maui/XML, and you can copy, modify if you like, and run any of them in
the same way you ran FirstExample.xml.

It is possible to configure Maui to run always with a particular XML input file. This is often a good way to run
Maui in a production environment. For more information on configuring Maui, see Chapter 5.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node4.html (1 of 2) [8/8/2003 4:02:33 PM]

1.1.2 Running Maui

<Maui RootClass="MyFirstClass">

<Class type="MyFirstClass">
 <Fields>
 <Int name="num" label="Life, the Universe, and Everything" default="42"/>
 </Fields>
</Class>

</Maui>

Figure 1.1: Our first Maui XML file; Just enough XML to generate our first GUI.

Figure 1.2:Maui GUI generated by the input shown in Figure 1.1

Next: 2. How to Design Up: 1 Getting Started Previous: 1.1.6.2 Troubleshooting

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node4.html (2 of 2) [8/8/2003 4:02:33 PM]

2. How to Design Maui Objects

Next: 2.1 Introduction Up: A Maui User's Guide Previous: 1.1.2 Running Maui

2. How to Design Maui Objects

Subsections

● 2.1 Introduction
● 2.2 The Basics
● 2.3 Maui Primitives
● 2.4 Classes as Fields
● 2.5 Using Subclasses to Represent Choices

❍ 2.5.1 Data Representation
❍ 2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes
❍ 2.5.3 Labeling in the Subclass Menu

● 2.6 Arrays
❍ 2.6.1 The Master Block
❍ 2.6.2 Other Array Options

● 2.7 Tables
● 2.8 References
● 2.9 Maui help buttons
● 2.10 Summary of Maui

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node5.html [8/8/2003 4:02:33 PM]

2.1 Introduction

Next: 2.2 The Basics Up: 2. How to Design Previous: 2. How to Design

2.1 Introduction
Maui is a tool for building a graphical user interface (GUI) to an application given a high-level XML
specification of the application. The XML input to Maui captures the structure of the data for the
underlying application as well as the necessary parameters to specify a particular problem. Maui's output
is XML that contains both the structural information as well as the user's input parameters. For this
output XML to be used by the underlying application, the Maui GUI developer may be required to
generate some Java code (or code in some other language) for parsing the XML and formatting the data
into a style appropriate to the application.

Those targeted to use Maui are application developers who would like to spend more time developing
application codes, and less time writing GUIs for those applications. The motivating idea behind Maui is
that it is ultimately more efficient to build a single GUI builder than to build an endless series of single-
purpose GUIs.

There are a number of advantages to using Maui to develop your GUI. Most importantly, Maui is a
timesaver: we have found that a GUI for a moderately complex application can be written in a few days
with a few hundred lines of Maui specification XML rather than weeks or months with thousands of lines
of Java. This implies that the GUI can be easily modified an updated, making Maui an ideal tool to be
used during the development stage. Furthermore, since Maui is a standard your GUI will immediately
have a look-and-feel identical to other GUIs built with Maui.

Maui is written in Java, but the developer of a Maui application need not write a lot of Java code to use
Maui or to read this tutorial. What the developer should know is:

● The fundamentals of XML such as elements, attributes, and content. Advanced XML features are
not needed to write Maui specifications.

● Fundamental concepts of object-oriented design such as classes and inheritance. Some experience
with an object-oriented programming language is useful. Java coding is necessary to write custom
actions and custom editors for a specific application. Additionally, Java coding may be necessary
for parsing Maui output XML for use in the specific application. Only XML knowledge is needed
to generate a Maui GUI.

GUI development with Maui is most efficient when the application is understood from an object-oriented
point of view. However, this does not in any way limit the use of Maui to applications written in object-
oriented languages. Indeed, Maui is an ideal way to provide a more structured interface to a traditional

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node6.html (1 of 2) [8/8/2003 4:02:33 PM]

2.1 Introduction

FORTRAN or C subroutine library.

This tutorial is intended as a step-by-step, example-centered introduction to Maui. Beyond simply
presenting Maui syntax, an important goal of the tutorial is to illustrate good principles for designing
Maui GUIs. As with any design problem, there are many paths and choices that can be made; most
nontrivial applications could be interfaced with Maui in a number of ways. We will try to suggest
guiding principles for creating effective GUIs and for efficient use of Maui.

In this tutorial, when we refer to a user, we mean the end user of the GUI produced by Maui. You, the
reader, are assumed to be a Maui GUI developer, by which we mean one who is using Maui to develop a
GUI, not one who is developing the core Maui code.

In this chapter, we lead you through writing and displaying your first Maui class.

Next: 2.2 The Basics Up: 2. How to Design Previous: 2. How to Design

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node6.html (2 of 2) [8/8/2003 4:02:33 PM]

2.2 The Basics

Next: 2.3 Maui Primitives Up: 2. How to Design Previous: 2.1 Introduction

2.2 The Basics
Every Maui input file must contain a single XML block with tag Maui. The Maui block in Figure 1.1 has an attribute
RootClass="MyFirstClass". The value of the RootClass attribute gives the name of the class that will be
displayed in the main panel of the GUI.

Any Maui GUI, even this simple one to edit a single integer, will be defined in terms of a class. What is a class? A class
is a collection of GUI components (textboxes, buttons, checkboxes, etc.). For example, in the following figure, we have
created the class, "MyFirstClass." Inside of the <Fields> tag, we have one integer textbox.

<Class type="MyFirstClass">
 <Fields>
 <Int name="num" label="Life, the Universe, and Everything" default="42"/>
 </Fields>
</Class>

Figure 1.1.1: Example Maui Class

A Maui class is written as a block of XML with tag Class. The type name of the class is given as the type attribute of
the class; in Figure 1.1 the name of the class is MyFirstClass. A legal Maui class name must contain no whitespace or
special XML characters; examples of legal Maui class names are MyFirstClass, my_first_class, and
myClass1.

If a class has data fields, the Class block will have a child called Fields. The fields themselves will be the children of
Fields. Each field is a single XML block whose tag is the type of that field. For example, in Figure 1.1 the tag of the
single field is Int.

Some of the common attributes for fields are listed below:

● name is a required attribute for all fields. It is used internally by Maui as a variable name to identify the field, and
in the case of primitives, it may be used as the attribute name for that variable in the output XML. The value of the
name attribute should be a string with no spaces. Additionally, no two fields inside the same class should have the
same name; this is just as two different variables within the same scope must have different names in any
programming language.

● label is an optional attribute for all fields. It is used to specify the labeling text that will appear on the GUI
component for editing the field. If a label attribute is not supplied, the text label defaults to the field's name
attribute.

● default is an optional attribute for primitive fields. It specifies the default value of the primitive variable, which

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node7.html (1 of 2) [8/8/2003 4:02:33 PM]

2.2 The Basics

will appear as initial data in the variable's editable GUI component (for example, a text field). If no default is
supplied, the editable component will be left blank.

Other field types may have other attributes. See Appendix B for the complete description of Maui XML elements and
their attributes.

When you run this example, the Maui window will appear as in Figure 1.2. The single field in Figure 1.2 is an integer,
and Maui will restrict input to text that can be interpreted as an integer. While Maui will not prevent typing non-integer
text such as 3.14159 or See spot run into the text field, it will detect invalid input whenever a Maui action button
is pushed. See Chapter 3 for information on creating Maui actions.

Next: 2.3 Maui Primitives Up: 2. How to Design Previous: 2.1 Introduction

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node7.html (2 of 2) [8/8/2003 4:02:33 PM]

2.3 Maui Primitives

Next: 2.4 Classes as Fields Up: 2. How to Design Previous: 2.2 The Basics

2.3 Maui Primitives
<Maui RootClass="Primitives">
 <Class type="Primitives">
 <Fields>
 <Int name="num" label="Life, the Universe, and Everything" default="42"/>
 <Double name="pi" label="A round number" default="3.14159" optional="true"/>
 <Boolean name="liar" label="This statement is a lie" default="true"/>
 <String name="text" label="Famous last words" default="Hey, what's this red button do?"/>
 <String name="pick" label="Your choice of one">
 <Menu options="low price|high performance|reliability"/>
 </String>
 <String name="OS" label="choose your Operating System">
 <Menu options="Windows|Linux|MacOS|other" style="radioButton"/>
 </String>
 <String name="picks" label="Time period">
 <Menu options="7:45|8:00|8:15|8:30|8:45|9:00|9:15" style="list" listMode="single_interval"/>
 </String>
 <String name="quote" label="Quote" columnWidth="20" default="'Nothing shocks me, I'm a
scientist.'

 -Harrison Ford, as Indiana Jones">
 <TextArea height="3"/>
 </String>
 </Fields>
 </Class>
</Maui>

Figure 2.1:XML class that demonstrates the use of the four Maui primitive types.

In Figure 2.1 we show a class containing each of the four Maui primitive types: Integer, Double,
Boolean, and String. We show five modes of String entry: the variable text is edited with a text
box into which any text can be entered; the variable pick is given a list of options, and Maui produces a
drop-down menu from which the user must pick one option; the variable OS is given a list of options
from which the user must pick one from a series or radio buttons; the variable picks is given a list of
options, and Maui produces a list from which the user can pick multiple options; the variable quote is
given a height and Maui makes a multi-line text area in which the user can enter multiple lines of text.
Note that in the XML in Figure 2.1 the String Menu choices are separated by the pipe symbol (|).

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node8.html (1 of 3) [8/8/2003 4:02:34 PM]

2.3 Maui Primitives

Not shown in this example is one other entry mode for a String: a text box accompanied by a file
chooser button. This entry mode is specifically designed to handle string representations of file paths.
This other method of representing a String requires the use of a CustomEditor; please see
Chapter 4, Custom Editors, where we include an example of using the String Custom Editor.

As you might expect, the input for a double is restricted to be a double. There are no a priori
restrictions on input for string variables. The GUI components for boolean and list-selectable string
variables guarantee legal input for those variables.

For the complete list of attribute settings supported by each primitive, see Appendix B, Maui XML
syntax guide.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node8.html (2 of 3) [8/8/2003 4:02:34 PM]

2.3 Maui Primitives

Figure 2.2:Maui GUI generated by the input shown in Figure 2.1.

Next: 2.4 Classes as Fields Up: 2. How to Design Previous: 2.2 The Basics

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node8.html (3 of 3) [8/8/2003 4:02:34 PM]

2.4 Classes as Fields

Next: 2.5 Using Subclasses to Up: 2. How to Design Previous: 2.3 Maui Primitives

2.4 Classes as Fields
As in Java or C++, Maui classes can contain instances of other classes as data members. As a simple
example, Figure 2.3 shows a Line class containing two Point classes as fields. Figure 2.4 shows the
resulting Maui GUI. At any time, the user can determine which field to edit by selecting one of the tabs
at the top of the tab pane.

By default, the class instances are displayed in the GUI as tabbed panes. The tabs appear from left to
right, front to back, in the order in which consecutive class instances are defined in your XML. In Figure
2.3, the Point instance named a appears right before the Point instance named b, and thus the tabs
appear as point A first, then point B. If the XML writer were to place a String instance between
these two Point instances, as in Figure 2.5, then the two points would appear in separate tabbed panes,
with only one tab in each pane (Figure 2.6).

Maui also has the capability to display class instances as GUI components other than tabbed panes. If for
a particular instance of the Point class you wish to have non-tabbed panes, you can use the
collapsible attribute for the class instance. If collapsible is set to false, then a simple framed
pane, containing the appropriate fields, will be used to display your class. If collapsible is set to
true, you can additionally specify the beginCollapsed attribute to show the class pane ``open'' or
``closed''. The XML in Figure 2.7 shows three Point objects that use the different combinations of
setting the collapsible and beginCollapsed attributes. The resulting GUI representation of
these classes is shown in Figure 2.8. Clicking on the +/- signs for the collapsible panes shows how the
panes can be expanded or hidden as desired.

Descriptions of all the attributes for a class instance are contained in Appendix B, Maui XML syntax
guide, Section B.24.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node9.html (1 of 5) [8/8/2003 4:02:34 PM]

2.4 Classes as Fields

<Maui RootClass="Lines">

 <Class type="Lines">
 <Fields>
 <Point name="a" label="point A"/>
 <Point name="b" label="point B"/>
 </Fields>
 </Class>

 <Class type="Point">
 <Fields>
 <Double name="x" label="x coordinate"/>
 <Double name="y" label="y coordinate"/>
 </Fields>
 </Class>

</Maui>

Figure 2.3:Maui XML that demonstrates the use of class instance containment. Two instances of the
class Pointare contained in class Line.

Figure 2.4:Maui GUI generated by the input shown in Figure 2.3, with field point Achosen from the
tabbed panes.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node9.html (2 of 5) [8/8/2003 4:02:34 PM]

2.4 Classes as Fields

<Maui RootClass="Lines">

 <Class type="Lines">
 <Fields>
 <Point name="a" label="point A"/>
 <String name="fred" label="Enter a string"/>
 <Point name="b" label="point B"/>
 </Fields>
 </Class>

 <Class type="Point">
 <Fields>
 <Double name="x" label="x coordinate"/>
 <Double name="y" label="y coordinate"/>
 </Fields>
 </Class>

</Maui>

Figure 2.5:Maui XML that demonstrates the use of class instance containment. Two instances of the
class Pointare separated by the Stringlabeled Enter a string.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node9.html (3 of 5) [8/8/2003 4:02:34 PM]

2.4 Classes as Fields

Figure 2.6:Maui GUI generated by the input shown in Figure 2.5.

<Maui RootClass="Lines">

 <Class type="Lines">
 <Fields>
 <Point name="a" label="point A" collapsible="false"/>
 <Point name="b" label="point B" collapsible="true"
 beginCollapsed="false"/>
 <Point name="c" label="point C" collapsible="true"
 beginCollapsed="true"/>
 </Fields>
 </Class>

 <Class type="Point">
 <Fields>
 <Double name="x" label="x coordinate"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node9.html (4 of 5) [8/8/2003 4:02:34 PM]

2.4 Classes as Fields

 <Double name="y" label="y coordinate"/>
 </Fields>
 </Class>

</Maui>

Figure 2.7:Maui XML that demonstrates the use of collapsibleand beginCollapsedattributes
of a class instance.

Figure 2.8:Maui GUI generated by the input shown in Figure 2.7.

Next: 2.5 Using Subclasses to Up: 2. How to Design Previous: 2.3 Maui Primitives

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node9.html (5 of 5) [8/8/2003 4:02:34 PM]

2.5 Using Subclasses to Represent Choices

Next: 2.5.1 Data Representation Up: 2. How to Design Previous: 2.4 Classes as Fields

2.5 Using Subclasses to Represent
Choices
Users of applications codes are usually presented with a large number of choices, perhaps between
different algorithms, different material models, or different output formats. Many choices will have
parameters in common, but in general, parameters can be specific to a particular choice. This makes hand-
editing input files difficult and error-prone. Maui's system for representing choices is intended to
guarantee that the user will be presented with GUI components for only those parameters appropriate to
the choice currently under consideration.

Maui represents choices between related alternatives, such as a choice between algorithms or a choice
between material models, as a choice between subclasses derived from a base class. For example, two
constitutive models such as linear elastic and elastic-plastic may derive from a common
ConstitutiveModel base class.

Subsections

● 2.5.1 Data Representation
● 2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes
● 2.5.3 Labeling in the Subclass Menu

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node10.html [8/8/2003 4:02:35 PM]

2.5.1 Data Representation

Next: 2.5.2 Appearance of Subclasses Up: 2.5 Using Subclasses to Previous: 2.5 Using Subclasses to

2.5.1 Data Representation

When interpreting a class inheritance hierarchy, Maui will build a menu GUI component from which a particular
subclass can be selected. At any time, only the fields that pertain to the selected subclass are available for editing.

Figure 2.9 shows the Maui input for a simple constitutive model class heirarchy. The classes LinearElastic and
ElasticPlastic both derive from the base class of type ConstitutiveModel. The syntax that specifies
derivation is simple: in the base class, no modification is necessary, and in the subclasses, one just adds the base
attribute with the name of the base class as the attribute value for the Class XML block.

Notice that the Young's modulus field, E, and the Poisson's ratio, nu, are defined in the base class and will be
common to all subclasses. Subclass LinearElastic adds no new fields, whereas subclass ElasticPlastic
adds new fields for the initial yield stress and the hardening modulus.

<Maui RootClass="ConstitutiveModel">

<Class type="ConstitutiveModel"
 label="Constitutive Model (default: Linear Elastic)">
 <Fields>
 <String name="description" default="Structural steel"/>
 <Double name="E" label="Young's modulus" default="2.0e11"/>
 <Double name="nu" label="Poisson's ratio" default="0.3"/>
 </Fields>
</Class>

<Class type="LinearElastic" label="Linear elastic" base="ConstitutiveModel"/>

<Class type="ElasticPlastic" label="Elastic-plastic" base="ConstitutiveModel">
 <Fields>
 <Double name="yieldStress0" label="Initial yield stress" default="4.0e8"/>
 <Double name="hardeningModulus" label="Hardening modulus" default="2.0e8"/>
 </Fields>
</Class>

</Maui>

Figure 2.9:Maui input for a constitutive model base class and two subclasses representing specific constitutive
models.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node11.html (1 of 3) [8/8/2003 4:02:35 PM]

2.5.1 Data Representation

Figure 2.10:Maui GUI generated by the input shown in Figure 2.9, with subclass Linear Elasticchosen from
the drop-down subclass selection menu.

Figure 2.11:Maui GUI generated by the input shown in Figure 2.9, with subclass Elastic-Plasticchosen from
the drop-down subclass selection menu.

Figures 2.10 and 2.11 show two views of the GUI generated by Maui from the input in Figure 2.9. The subclass is
chosen by means of a dropdown menu presenting the subclass labels. In Figure 2.10, the user has selected the

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node11.html (2 of 3) [8/8/2003 4:02:35 PM]

2.5.1 Data Representation

subclass LinearElastic from the menu, and only the options appropriate to LinearElastic appear. In
Figure 2.11, the user has selected the subclass ElasticPlastic and additional plasticity parameters are now
editable.

Next: 2.5.2 Appearance of Subclasses Up: 2.5 Using Subclasses to Previous: 2.5 Using Subclasses to

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node11.html (3 of 3) [8/8/2003 4:02:35 PM]

2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes

Next: 2.5.3 Labeling in the Up: 2.5 Using Subclasses to Previous: 2.5.1 Data Representation

2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes

Recall from Section 2.4 that one has the option to display class instances in collapsible frames, non-collapsible frames, or
as tabs in a tabbed pane. One can merge, into one tabbed pane, one or more tabs in the base class with one or more tabs in a
subclass; to do this, the Maui XML writer has to pay attention to where the tabs' class instances are placed in the XML file.

To locate base class and subclass class instance fields in the same tabbed pane:

1. The useTab attribute of the class instance should be set to true. This is the default if the collapsible
attribute is not used.

2. Determine which class instances in the base class you want to represent as tabs in the same tabbed pane as class
instances in a derived class. In the XML file, place those class instances as the last items inside the base class. These
class instances must be contiguous; that is, fields of other types (String, Int, Double, etc.) cannot appear
between these class instances.

3. Determine which class instances in the subclass you want to represent as tabs in the same tabbed pane as class
instances in a base class. In the XML file, place those class instances as the first items inside the subclass. These
class instances must be contiguous; that is, fields of other types (String, Int, Double, etc.) cannot appear
between these class instances.

The example of how class instances displayed as tabbed panes can appear in both the XML and GUI are shown in
Figures 2.12 and 2.13, respectively. Though the ``data'' in the classes do not give a good example of what should go in a
subclass versus a base class, the examples show the tabbed pane rendering issues in Maui. Note that the XML in
Figure 2.12 is abridged. If you would like to run this example yourself, see the file
$MAUI_HOME/Doc/tutorials/maui/XML/SubclassExample2.xml.

<Maui RootClass="MyBase">

<Class type="MyBase" label="The Base Class">
 <Fields>
 <A1 name="a1" label="Class Instance A1"/>
 <String name="myString" label="Enter a String"/>
 <!-- Because the following two class instances are adjacent,
 they will appear in the same tabbed pane -->
 <A2 name="a2" label="Class Instance A2"/>
 <A3 name="a3" label="Class Instance A3"/>
 <Int name="myInteger" label="Enter an Integer"/>
 <!-- Because the following two class instances are adjacent and located as the
 last two fields in this class, they will appear in the same tabbed pane.
 Further, they will appear in the same tabbed pane as any class instances
 that appear at the top of a subclass derived from the MyBase class. -->
 <A4 name="a4" label="Class Instance A4"/>
 <A5 name="a5" label="Class Instance A5"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node12.html (1 of 4) [8/8/2003 4:02:36 PM]

2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes

 </Fields>
</Class>

<Class type="MySubclass" label="Subclass Example" base="MyBase">
 <Fields>
 <!-- The following two class instances will appear in the same
 tabbed pane as the A4 and A5 instances in the base class. -->
 <B1 name="b1" label="Class Instance B1"/>
 <B2 name="b2" label="Class Instance B2"/>
 <Double name="myDouble" label="Enter a Double"/>
 <B3 name="b3" label="Class Instance B3"/>
 <B4 name="b4" label="Class Instance B4"/>
 </Fields>
</Class>

<Class type="A1" >
 <Fields>
 <String name="aName" label="Enter a name"/>
 </Fields>
</Class>

<Class type="A2" >
 <Fields>
 <String name="aPlace" label="Enter a place"/>
 </Fields>
</Class>

<Class type="A3" >
 <Fields>
 <Integer name="aNumber" label="Enter your favorite number"/>
 </Fields>
</Class>

<Class type="A4" >
 <Fields>
 <Double name="pi" label="The value of pi" default="3.14159" editable="false"/>
 </Fields>
</Class>

<Class type="A5" >
 <Fields>
 <Boolean name="iceCream" label="I like ice cream" default="true"/>
 </Fields>
</Class>

<Class type="B1" >
 <Fields>
 <String name="transport" label="Favorite mode of transportation">
 <Menu options="car|bus|train|airplane|boat" style="radioButton"/>
 </String>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node12.html (2 of 4) [8/8/2003 4:02:36 PM]

2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes

 </Fields>
</Class>

<Class type="B2" >
 <Fields>
 <String name="aName" label="Enter a name"/>
 </Fields>
</Class>

<Class type="B3" >
 <Fields>
 <String name="aName" label="Enter a name"/>
 </Fields>
</Class>

<Class type="B4" >
 <Fields>
 <String name="aName" label="Enter a name"/>
 </Fields>
</Class>

</Maui>

Figure 2.12:Maui input showing how tabbed class instances in a base class and subclass can be rendered in one tabbed
pane.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node12.html (3 of 4) [8/8/2003 4:02:36 PM]

2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes

Figure 2.13:Maui GUI generated by the input shown in Figure 2.12. Note how instances of A4and A5from the base class,
and instances of B1and B2from the derived class appear in the same tabbed pane.

Next: 2.5.3 Labeling in the Up: 2.5 Using Subclasses to Previous: 2.5.1 Data Representation

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node12.html (4 of 4) [8/8/2003 4:02:36 PM]

2.5.3 Labeling in the Subclass Menu

Next: 2.6 Arrays Up: 2.5 Using Subclasses to Previous: 2.5.2 Appearance of Subclasses

2.5.3 Labeling in the Subclass Menu

As mentioned earlier, when you set up a subclassing heirarchy, Maui will build a menu component from
which a particular subclass can be selected. The labels for each of the subclasses will appear in the menu.
Before a user selects on the subclass menu for the first time, the label of the base class will appear on the
menu button. However, the fields associated with the first subclass in the menu will already be displayed.
It is good practice to give your base class a label that notes that the first subclass is displayed by
default. In Figure 2.9 notice that the base class, ConstitutiveModel, has
label="ConstitutiveModel (default: Linear Elastic)". This sort of labeling
acknowledges that the fields of the first derived class, in terms of where the derived class was defined in
the order of your XML file, are displayed even before the user has a chance to select a subclass.

Note also that by default the label that appears to the left of the subclass selection menu displays
Select subclass. As Subclass is not the best description for any specific subclass, you may
override the selection label with something more meaningful. For Figure 2.10, a more meaningful label
might be Select A Model. To override the selection label use the selectionLabel attribute for
an instance of a base class, or a definition of a base class:

<Class type="ConstitutiveModel"
 label="Constitutive Model (default: Linear Elastic)"
 selectionLabel="Select A Model">
 .
 .
 .
</Class>

Next: 2.6 Arrays Up: 2.5 Using Subclasses to Previous: 2.5.2 Appearance of Subclasses

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node13.html [8/8/2003 4:02:36 PM]

2.6 Arrays

Next: 2.6.1 The Master Block Up: 2. How to Design Previous: 2.5.3 Labeling in the

2.6 Arrays
Often we will need to work with a unknown number of class objects. For example, a finite-element code
might have an arbitrary number of subregions, or a sequential approximation strategy might have an
arbitrary number of approximate models. Maui represents arbitrarily-sized collections of objects as
Arrays.

Figure 2.14 contains the XML for a simple example of an array. Figure 2.15 shows the GUI
representation of the Array. The name of the array is Parts and it consists of a set of objects of class
Part. To add an item to the array, you can click on the ``Add'' button, which creates a new array
element and places that array element at the bottom of the list. When the editor (a dialog box for editing
the array element) comes up, you can enter the values for that element. An existing element can be
displayed by double clicking on the name of that element in the list. Single clicking on an element
``selects'' that element. The ``Remove'' button removes the selected item from the list. The ``Insert above
selection'' button creates a new array element; the new element is placed in the list above the selected
item.

<Maui RootClass="ArrayExample">
 <Class type="ArrayExample">
 <Fields>
 <Array name="Parts">
 <Master label="$partName ($materialName $A)">
 <Part name="part"/>
 </Master>
 </Array>
 </Fields>
 </Class>

 <Class type="Part">
 <Fields>
 <String name="partName" label="name of part">
 <Menu options="nut|bolt|nail|washer"/>
 </String>
 <String name="materialName" label="name of material"/>
 <Int name="Z" label="atomic number"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node14.html (1 of 3) [8/8/2003 4:02:37 PM]

2.6 Arrays

 <Int name="A" label="atomic weight"/>
 </Fields>
 </Class>
</Maui>

Figure 2.14:Maui input XML example of creating an Array.

Figure 2.15:Parts Array Example.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node14.html (2 of 3) [8/8/2003 4:02:37 PM]

2.6 Arrays

Subsections

● 2.6.1 The Master Block
● 2.6.2 Other Array Options

Next: 2.6.1 The Master Block Up: 2. How to Design Previous: 2.5.3 Labeling in the

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node14.html (3 of 3) [8/8/2003 4:02:37 PM]

2.6.1 The Master Block

Next: 2.6.2 Other Array Options Up: 2.6 Arrays Previous: 2.6 Arrays

2.6.1 The Master Block

Notice in Figure 2.14 that the Array object contains a Master block. It is here, inside the Master
block, where we need to tell Maui about the type of the elements that can appear in this array. The
Master element must be an instance of a Class, which can have arbitrary fields. Since we have a
single Master element, all elements in the array must be of the type of this class. If you want to have an
array with heterogeneous elements, you need to derive these types from a base class and use the base
class as the Master.

Also notice that the label of an Array element, appearing in the list of array elements (see Figure 2.15),
depends on the value of a field in the Master element. The label attribute of a Master element
contains a template for the label, with the variable prefixed with a dollar sign ($). In the example in
Figure 2.14, the data entered by the user in the partName, materialName, and A fields for the class
Part will be used to generate the label. The data entered in these fields, combined with any clear text,
will be combined to make the label for a particular Array element.

When a user enters data into a field that is used to generate a label for an array, the label in the Array
list is left blank until the user clicks ``OK'' in the array editor window.

Next: 2.6.2 Other Array Options Up: 2.6 Arrays Previous: 2.6 Arrays

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node15.html [8/8/2003 4:02:37 PM]

2.6.2 Other Array Options

Next: 2.7 Tables Up: 2.6 Arrays Previous: 2.6.1 The Master Block

2.6.2 Other Array Options

Just as with Class elements, the GUI display style of Array elements can be controlled. In
Section 2.4, Classes as fields, you learned how to make a Class editor display in collapsible mode
using the collapsible attribute, and to set its initial collapsed state with the beginCollapsed
attribute. One can use the collapsible and beginCollapsed attributes with Arrays as well.
However, Arrays are never represented as tabbed panes.

Arrays also share the selectionLabel attribute with Class elements. In Section 2.5, Using
subclasses to represent choices, you learned that you could replace the default Select subclass
label for the subclass selection GUI menu with a more personalized label. You can also use the
selectionLabel attribute to change the default Array element menu label from Select an
element: to something meaningful to the specific Array.

For more information on these attributes, see Sections 2.4 and 2.5, as well as Appendix B, Maui XML
syntax guide, Section B.12.

Next: 2.7 Tables Up: 2.6 Arrays Previous: 2.6.1 The Master Block

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node16.html [8/8/2003 4:02:37 PM]

2.7 Tables

Next: 2.8 References Up: 2. How to Design Previous: 2.6.2 Other Array Options

2.7 Tables
An Array is one way to generate a list of elements in Maui, but it is not the only way. The other data type
that can be used for this is a Table. In Maui, the main difference between a Table and an Array is the
data types allowed in the elements. Array elements must contain only an instance of a Class object. Table
elements on the other hand may only contain Strings, Integers, Doubles, Booleans and
References. Despite this limitation of Tables, there are several advantages to using Tables instead of
Arrays. First, in order to view or edit an Array GUI element, a new dialog box must be opened up for that
element. Alternatively, in a Table all of the data is displayed in the main GUI, making it easier to view and
edit data. Second, in the XML for an Array you have to write a separate class to define the Master element
of the Array. In a Table there is no need for creating a class to contain the Table elements, since all of
the XML describing that Table is contained within the Table Header and Entries. This makes the
XML for a Table easier to write, read and maintain. Even though Arrays are more flexible, if you do not
need some of the more complex data types such as Arrays, Tables or Class instances embedded in your
Array elements, it may be worthwhile to use a Table instead. Two examples of Tables are displayed in
Figure 2.17 with the corresponding XML given in Figure 2.16. These Tables describe an inventory list and
a purchase order for items in that list.

<Maui RootClass="TableExample">
 <Class type="TableExample" label="Example Of A Table">
 <Fields>
 <!-- Table describing the available products -->
 <Table name="inventory" label="Available Products">
 <Header name="product" label="$productName">
 <String name="productName" label="Product"/>
 <Double name="price" label="Price in $"/>
 </Header>
 <Entries>
 <Entry>
 <Cell field="productName" value="Towel"/>
 <Cell field="price" value="9.99"/>
 </Entry>
 <Entry>
 <Cell field="productName" value="Soap"/>
 <Cell field="price" value="3.99"/>
 </Entry>
 <Entry>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node17.html (1 of 5) [8/8/2003 4:02:38 PM]

2.7 Tables

 <Cell field="productName" value="Shampoo"/>
 <Cell field="price" value="5.99"/>
 </Entry>
 </Entries>
 </Table>
 <!-- Table describing a purchase Order for the above Products -->
 <Table name="order" label="Purchase Order" maxEntries="3">
 <Header name="purchase" sizing=" | 30 |">
 <Reference name="referenceToProduct" label="Product"
 path="../inventory"/>
 <Boolean name="buyThis" label="Buy?" default="false"/>
 <Integer name="quantity" label="Quantity" default="1"/>
 </Header>
 <Entries>
 <Entry>
 <Cell field="referenceToProduct" value="3"/>
 </Entry>
 <Entry>
 <Cell field="referenceToProduct" value="2"/>
 <Cell field="buyThis" value="true"/>
 <Cell field="quantity" value="3"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

Figure 2.16:XML to produce the tables shown in Figure 2.17.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node17.html (2 of 5) [8/8/2003 4:02:38 PM]

2.7 Tables

Figure 2.17:The Maui GUI generated by the XML shown in Figure 2.16, displaying products and a purchase
order in two tables.

The first Table (named inventory) contains a list of products and the associated price of each product.
This Table has two columns defined by the two fields inside the Header block of the XML. The first
column requires Strings giving the product name and the second column requires Doubles giving the
price of the product. Each of the fields inside the Header also has two attributes, name and label. The
attribute name is the variable name that will be given to any new entries (columns) that are added to the
Table, and label is the label that will be displayed for the entry column. The label used in the Header
for the inventory Table is a special computed label which derives its value from the data in the
Entries. The way to use data from a text field entry as part of a label is to include a $ followed by the name
of the field that should be used for the label. Note that this is the same process as for creating computed labels
for an Array element. For example, in the inventory XML, label="$productName". This means
that the computed label of the first entry will be the contents of the field productName, i.e. Towel. To
display an actual dollar sign in the Header label, \$ must be entered. To display a single backslash, \\ must

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node17.html (3 of 5) [8/8/2003 4:02:38 PM]

2.7 Tables

be used. So, if in the Header we have attribute setting label="$greeting \$greeting
\\$greeting \\\$greeting" and the entry has a field greeting which is set to hi, then the label
used for the Entry will be hi $greeting \hi \$greeting. While the computed labels are not seen
in the inventory Table itself, they can be seen in the referenceToProduct field of the order
Table.

In this example, the inventory Table starts out with three items that have already been entered: a towel,
soap, and shampoo. These entries are each given by an Entry tag within the Entries block. To set the
initial values in a Table entry, a Cell element is added inside an Entry element. The field attribute in
the Cell gives the name of the field to set, and the value attribute holds the initial value of that field. So,
the first Entry element says that the Table will start out with an element whose productName is Towel
with a price of 9.99. Note that you need not initialize your Table with any Entries; to start with a
blank Table, just omit the entire Entries XML block.

The order Table shows some of the more complex features of Tables. The first noticeable difference in
the XML from the inventory Table is the presence of a maxEntries attribute in the Table element.
maxEntries limits the number of row entries that are allowed in the Table. In this case, there can be no
more that three entries (rows) in the Table. Two related attributes are minEntries, which requires the
user to have at least a certain number of entries, and fixedNumberOfEntries which means that there
will be exactly the number of entries specified. Any or all of these three attributes can be used together
provided that maxEntries is greater than or equal to fixedNumberOfEntries, which in turn is greater
that or equal to minEntries.

Another feature in the order XML is the sizing attribute in the Header element. By default, Maui will
set the width of the columns automatically, but sometimes this default size is not what you want. For example,
in the order Table, the column buyThis would have been just as wide as the other two columns if Maui
had used the default size, making the column much too wide for just a simple check box. To make the
buyThis field narrower, the sizing attribute was used. The sizing attribute is a list of integers
separated by pipes (|). These integers give the width of each column, corresponding to the order of the
column variables entered in the Header. If the space for a column width is blank or negative, Maui will use a
default size for that column. In this example, the sizing attribute is equal to " | 30 | ". Here, the first
and third spaces are blank while the the second space contains 30. This means that Maui will use the default
column width for the first and third columns, but the buyThis column will have a size of "30", just right to
display the check box. Note that the width, in Java, corresponds to ``columns'' in the JTextField component.
There is no good suggestion of how to determine how many ``columns'' will be wide enough for your selected
display. Unfortunately, trial and error seems the best way to determine the widths of the columns for each
particular problem.

One more item that appears in the order XML is the reference. For details on creating references,
see Section 2.8. In this example, the reference in the purchase order is a selection reference to one of
the items available in the inventory list. To use the selection reference in the GUI representation of
the order Table, double click on a cell in the Product column of the purchase order and a list of the
products will pop up so that the user can choose which product to buy. With other data types, we were able to
set an initial value using the field and value attributes of a Cell. To set an initial selection for a

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node17.html (4 of 5) [8/8/2003 4:02:38 PM]

2.7 Tables

reference, field is set to the reference name while value contains the index of the item to initially
select for the reference. In the purchase order, there is a selection reference named
referenceToProduct and in the first entry for the purchase order, the value for this reference is set
to 3. This means that the third item in ../inventory , which happens to be Shampoo, will be initially
selected by this reference. If the index of the item to be initially selected by a reference does not
correspond to an existing index in the Table (i.e. index out of bounds), then the selection menu defaults back
to No Selection.

Like Arrays and Classes, the attributes collapsible, beginCollapsed, and selectionLabel
can be specified for Table elements. See Sections 2.4, 2.5, and 2.6, as well as Appendix B, Maui XML
syntax guide, Section B.13 for discussion of these attributes.

Next: 2.8 References Up: 2. How to Design Previous: 2.6.2 Other Array Options

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node17.html (5 of 5) [8/8/2003 4:02:38 PM]

2.8 References

Next: 2.9 Maui help buttons Up: 2. How to Design Previous: 2.7 Tables

2.8 References
In many applications, it is convenient to have a variable obtain its value by referring to a previously defined variable.
This eliminates the need for a user to enter the same information more than once, thus eliminating a major source of
errors and inconsistencies. For example, a user may define several materials in an Array, or several invetory items
in a Table (see the example in Section 2.7), and then want to refer to a particular item as part of setting up other
input. Maui contains a flexible system for specifying and controlling references. This feature of Maui is quite
powerful in creating and maintaining the consistency of GUIs for complex applications. In this section we explain
how to define references to elements in Arrays. For information on references in Tables see Section 2.7.

The hard part about using Maui references is telling Maui which object is being referenced. (To keep our vocabulary
consistent, we say that the referenced object is the ``referent''.) To specify the referent, you must provide the path to
the referent by navigating through the classes you have created in your XML. We refer to the following XML
example to explain how paths are set to locate a referent. You may open up the example in your own text editor; the
example is also contained in the file $MAUI_HOME/Doc/tutorials/maui/XML/References.xml. An
example of the GUI displayed from this XML is in Figure 2.18; note that Figure 2.18 shows a GUI where a user has
already entered information on tires, seats, and car types.

<Maui RootClass="CarConfig">

<Class type="CarConfig" label="Cars">
 <Action class="Maui.Interface.SaveAction" label="Save XML"/>
 <Action class="Maui.Interface.ReadAction" label="Read XML"/>
 <Action class="Maui.Interface.ViewAction" label="View XML"/>
 <Fields>
 <CarParts name="carParts" label="Car Parts"/>
 <Array name="carsArr" label="Cars">
 <Master label="$carType $carModel">
 <Car name="car" label="Car"/>
 </Master>
 </Array>
 </Fields>
</Class>

<Class type="CarParts" label="Car Parts" useTab="false" collapsible="false">
 <Fields>
 <Array name="tiresArr" label="Tire types">
 <Master label="$tireName">
 <Tire name="tire" label="Tires"/>
 </Master>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node18.html (1 of 6) [8/8/2003 4:02:39 PM]

2.8 References

 </Array>
 <Array name="seatsArr" label="Seat types">
 <Master label="seats: $seatColor $seatFabric">
 <Seat name="seat" label="Seat"/>
 </Master>
 </Array>
 </Fields>
</Class>

<Class type="Tire" label="Tires">
 <Fields>
 <String name="tireName" label="Tire Brand"/>
 <String name="tireWidth" label="Width">
 <Menu options="145|155|165|175|185|195|205"/>
 </String>
 <String name="tirePerformance" label="Top preformance preference">
 <Menu options="handling|ride|treadlife"/>
 </String>
 </Fields>
</Class>

<Class type="Seat" label="Seats">
 <Fields>
 <String name="seatColor" label="Seat color">
 <Menu options="burgundy|tan|white|black|navy"/>
 </String>
 <String name="seatFabric" label="Seat fabric">
 <Menu options="leather|cloth"/>
 </String>
 </Fields>
</Class>

<Class type="Car">
 <Fields>
 <String name="carType" label="Car Type">
 <Menu options="Ford|Chevy|Dodge|Honda|Toyota|Mercedes|BMW"/>
 </String>
 <String name="carModel" label="Model"/>
 <Reference name="refToTires" label="Tires"
 path="root/carParts/tiresArr"/>
 <Reference name="refToSeat" label="Seats"
 path="../carParts/seatsArr" output="dereference"/>
 <String name="carColor" label="Car color"/>
 </Fields>
</Class>
</Maui>

Figure 2.17.1 References.xml

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node18.html (2 of 6) [8/8/2003 4:02:39 PM]

2.8 References

To locate a referent, we must follow a path of ownership through the XML classes. This may be done in one of two
ways: from the ``root'' class, or relative to the local class.

First we examine defining a Reference relative to the ``root'' class. This is a little complicated, so let's take it one
step at a time. In the preceding example, there are two references defined in the Class called Car. The
Reference named refToTires shows how to reference from the root. Note that in the first line of the
example, rootClass is defined to be carConfig. Thus using root in the path implies carConfig. Our syntax
requires that we use root in this context rather than carConfig. Now, note that the root class, CarConfig,
owns an instance of the class CarParts called carParts. CarParts, in turn, owns the tire array, tiresArr,
to which refToTires points. So our Reference from the root looks like root/carParts/tiresArr.
Note that one may use either Unix- or Windows-style separator; thus root\carParts\tiresArr is also a legal
Reference path specification.

Referencing relative to the local class is demonstrated with the refToSeat reference in the class Car. We use
notation similar to that for specifying paths in a Unix file system. A .. means ``up one level of ownership.'' In the
refToSeat reference, the .. means ``go up one level'' to the owner of this class, namely CarConfig. Recall that
CarConfig is also the root class in this example. From there we can trace back down the ownership tree just as in
the reference from root example, to the carParts instance, which in turn owns the seat array, seatsArr.

As in most programming languages that use references, you can choose between reporting the ``value'' of the
reference (by dereferencing the variable) or just the reference. In Maui we specify the choice between output
reference reporting types by using the output attribute. Note that in this example the refToSeat reference uses
this attribute. The output attribute may have one of two values, reference or dereference. By default, the
value is reference, which means that the path to the referent is returned in Maui's output XML. See the first
highlighted line in Figure 2.19 for the exact XML output. If the value is dereference, then the output XML
provides actual XML element that represents the referents value. See the second through fourth highlighted lines in
Figure 2.19 for the exact XML output.

One other point: in both of these examples, the referent is an Array and the implication is that the user is to select an
element of the Array. Sometimes, however, you may want the entire Array as the referent. Maui provides an
attribute to do this, called selection. If the value of selection="true" (the default), then the user selects an
element of the Array; if selection="false", then the entire Array is the referent. If selection="true",
then the output XML also includes a selection attribute, whose value is the variable name of the item selected
from the Array. See the first highlighted line in Figure 2.19.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node18.html (3 of 6) [8/8/2003 4:02:39 PM]

2.8 References

Figure 2.18:GUI example of referencing an Arrayelement. Items in the Tiresdropdown menu refer to the
elements in the Tire type Array

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node18.html (4 of 6) [8/8/2003 4:02:39 PM]

2.8 References

<CarConfig>
 <CarParts>
 <Array name="tiresArr">
 <Tire tireName="Michelin" tirePerformance="handling" tireWidth="145"/>
 <Tire tireName="Goodyear" tirePerformance="handling" tireWidth="145"/>
 <Tire tireName="Dunlap" tirePerformance="handling" tireWidth="145"/>
 </Array>
 <Array name="seatsArr">
 <Seat seatFabric="leather" seatColor="burgundy"/>
 <Seat seatFabric="cloth" seatColor="navy"/>
 </Array>
 </CarParts>
 <Array name="carsArr">
 <Car carColor="blue" carModel="Explorer" carType="Ford">
 <Reference index="3" name="refToTires" path="root/carParts/tiresArr">
 <Tire tireName="Dunlap" tirePerformance="handling" tireWidth="145"/>
 </Reference>
 <Reference index="1" name="refToSeat" path="../carParts/seatsArr">
 <Seat seatFabric="leather" seatColor="burgundy"/>
 </Reference>
 </Car>
 <Car carColor="green" carModel="Civic" carType="Honda">
 <Reference index="1" name="refToTires" path="root/carParts/tiresArr">
 <Tire tireName="Michelin" tirePerformance="handling" tireWidth="145"/>
 </Reference>
 <Reference index="1" name="refToSeat" path="../carParts/seatsArr">
 <Seat seatFabric="leather" seatColor="burgundy"/>
 </Reference>
 </Car>
 </Array>
</CarConfig>

Figure 2.19:Output XML generated from the Carexample. The highlighted lines show how the output XML is
rendered if the reference(highlighted yellow) or dereference(highlighted green) value is specified for the

outputattribute of a Reference.

For all reference variables, the GUI value of the reference is initially set to No Selection and this will get
rendered to XML if nothing else is done and if the optional="true" attribute is used. (Recall that by setting
optional="true" a value does not have to be selected; otherwise an error message is popped up to tell you that a
choice must be made.)

If the XML contains a path that is not valid, Maui pops up a dialog box that gives you the pertinant information about
the invalid path. Unfortunately, there is no way to guess what was intended, so the only recourse is for you to fix the
problem and try again.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node18.html (5 of 6) [8/8/2003 4:02:39 PM]

2.8 References

Next: 2.9 Maui help buttons Up: 2. How to Design Previous: 2.7 Tables

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node18.html (6 of 6) [8/8/2003 4:02:39 PM]

2.9 Maui help buttons

Next: 2.10 Summary of Maui Up: 2. How to Design Previous: 2.8 References

2.9 Maui help buttons
<Maui RootClass="HelpExample">

<Class type="HelpExample">
 <Fields>
 <Int name="num" label="Life, the Universe, and Everything" default="42">
 <Help>
 42 is the answer to the Ultimate question.
 This is from the story 'A Hitchikers Guide to the Galaxy'
 where the author, Douglas Adams, makes fun of people that
 try to answer questions that are impossible to solve. In
 the story a race of people build a super computer to find
 the answer to the question of Life, the Universe, and
 Everything, but after many millenia when it finally figured
 it out the answer was 42.
 </Help>
 </Int>
 <Double name="pi" label="A round number" default="3.14159" optional="true">
 <Help>
 A more precise calculation of this is
 3.14159265358979323846264338327950288419716939937510
 58209749445923078164062862089986280348253421170679
 </Help>
 </Double>
 <Boolean name="liar" label="This statement is a lie" default="true">
 <Help>
 This is a well known paradox much like the grandfather paradox
 in time travel.
 </Help>
 </Boolean>

<!-- *snip* -->

 </Fields>
</Class>

</Maui>

Figure 2.9: Help Example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node19.html (1 of 2) [8/8/2003 4:02:40 PM]

2.9 Maui help buttons

Figure 2.9 shows the example from the Primitives section except help messages have been added into the XML.
Help can be added to any of the MAUI data types including arrays and classes by using the Help tag. Inside the
block of any variable add a help tag (<Help>) then write the text that is to be displayed as help for the end-user.
New lines in the XML will remain when the help message is displayed but white space directly before and after the
newline will be removed.

The help is displayed to the end-user in a pop-up dialog. The help dialog is brought up when the end-user clicks the
help button next to the editor or presses F1 or alt-h when an editor has the focus. Help buttons are useful when more
help is needed than can resonably fit in a tooltip.

Figure 2.20:Maui GUI generated by the input shown in Figure 2.9.

Next: 2.10 Summary of Maui Up: 2. How to Design Previous: 2.8 References

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node19.html (2 of 2) [8/8/2003 4:02:40 PM]

2.10 Summary of Maui

Next: 3. Actions Up: 2. How to Design Previous: 2.9 Maui help buttons

2.10 Summary of Maui
Maui is based on a data-driven design, in which a GUI developer provides a specification of the structure
of an application and its input data. That data structure specification, optionally annotated with display
information, is then used by Maui to generate a GUI.

An important feature of GUIs is that they are generally dynamic and responsive, in the sense that the GUI
changes in response to user choices. A well-designed GUI should not be a static form that lists all
possible options; rather, the forms and options presented should be determined and restricted by the
choices already made. This seems to conflict with the idea that Maui should be data-driven - the most
naive way to do a ``data-driven'' GUI builder would be to use a data specification to build a simple static
form. The fact that Maui is not static leads to the first principle of Maui:

● Maui must be dynamic in response to user choices.

One of the key features of the Maui design is a representation of dynamic user choices through a
predefined data structure specification. The device is in fact quite simple: a choice of paths through the
GUI is represented as a choice between subclasses of a base class. The user selects a subclass with a drop-
down menu, and from then on sees only the options appropriate to the chosen subclass. Of course, the
user can backtrack and select a different path at any time.

The second principle of Maui is that it should conform with modern programming practices:

● Maui's data representation must be based on the concept of object orientation.

Our design parallels object-oriented programming languages such as C++ and Java. A Maui class can
contain fields, which can be instances of other classes, primitive types, references, arrays, or tables.
Furthermore, as with C++ or Java classes, Maui classes can derive from, and inherit certain properties of,
base classes (as in Java, Maui allows only single inheritance). In Maui as in C++ or Java programming,
an important design problem is to decide whether the relationship between two objects should be one of
containment (HAS-A relationship) or of inheritance (IS-A relationship). This decision is particularly
important for determining the dynamic behavior of the GUI generated by Maui.

In object-oriented programming languages one can associate methods, or functions, with classes.
Similarly, in Maui, one can associate actions with classes. Actions are graphical components that can
trigger an operation on the class data, for instance, saving it to disk, sending it to a server, or modifying it

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node20.html (1 of 3) [8/8/2003 4:02:40 PM]

2.10 Summary of Maui

in some way. See Chapter 3 for a description of Maui Actions.

We briefly summarize the principal objects in Maui:

● Class objects are containers where all other types of Maui data are contained. A Maui Class can
contain as Fields instances of other classes, as well as any of the data types described in this
chapter. Additionally, Actions (Chapter 3) and CustomEditors (Chapter 4), and AppData
(Appendix B, Section B.5) may be contained in a Class.

● Fields are the objects ``owned by'' a class. Fields can contain primitives, Arrays,
References, Tables, Comments, or class instances. See Appendix B, Section B.4 for more
on Fields.

● Primitives are data types representing a single non-compound object such as a number or a
character string. Maui supports four primitive types:

❍ String for character strings
❍ Integer for integer variables
❍ Double for real variables
❍ Boolean for boolean (logical) variables

Each primitive variable will be edited by one of several graphical components. The particular
component used can be specified in the primitive's definition. See the details on the XML syntax
for each of these primitives in Appendix B. Note that Section B.16 gives information about
theMenu element used by Strings for the various types of string editor rendering.

● An Array is an ordered list of some number of Class instance objects. The number of objects in
an Array is not predetermined by Maui and need not be predetermined by the data specification;
in a flexible-sized Array, objects can be added to or removed from an Array. See Appendix B,
Sections B.12, B.17, B.18, B.19, for details on the Array syntax.

● A Table is an object that contains one or more columns of primitive data types. A Table is much
like an Array, except that only String, Double, Integer, Boolean, or Reference
objects may define columns in a Table. See Appendix B, Sections B.13, B.20, B.21, B.22, B.23,
for all the vocabulary associated with defining a Table.

● A Reference is an object that ``points to'' another object. In Maui we use References to be able
to refer to particular elements in an Array or a Table. When the data in an Array or Table is
updated, a Maui Reference to the Array or Table is also updated. This allows the user to
select any current element in the Array or Table to which the Reference points. See
Appendix B, Section B.14 for the Reference syntax.

● AppData is an ``escape'' in which the GUI developer can put non-Maui information that is needed

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node20.html (2 of 3) [8/8/2003 4:02:40 PM]

2.10 Summary of Maui

by the application in interpreting Maui output. AppData is ignored by Maui; it is passed through
unchanged in Maui's output XML. See Appendix B, Section B.5 for the AppData syntax.

● A Comment is a Maui data type used to contain comments that are either displayed (in an
uneditable form) to the user through the GUI, or are passed to the back end application as
AppData is passed. See Appendix B, Section B.15.

● An Action is a button that is bound to both a Maui Class and a Java method that acts on the data
associated with the Maui Class. See Chapter 3 and Appendix B, Section B.6 for the complete
description of Maui Actions.

● An Editor is a graphical component that allows editing, through the GUI, of a given object. Every
object instance in memory will have a corresponding editor on the screen. Maui provides default
editors for all Maui data types, but one may create ``custom editors'' to represent data types in an
alternative way. See Chapter 4 and Appendix B, Section B.7 for the complete description of how
to create custom editors.

● Maui can Import definitions of Classes using the Import XML element. This is a handy
Maui feature in that the developer of a Maui inteface can break up their XML definitions into
different logical files, and then import these definitions into the ``main'' file. When a Maui
Import element appears in an XML file, the contents of the file specified in the Import
element are inserted at exactly that point in the importing XML file. See Appendix A,
Section A.1.2 for an example of how to use the Import XML. See Appendix B, Section B.3 for
the Import syntax.

Next: 3. Actions Up: 2. How to Design Previous: 2.9 Maui help buttons

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node20.html (3 of 3) [8/8/2003 4:02:40 PM]

3. Actions

Next: 3.1 Introduction Up: A Maui User's Guide Previous: 2.10 Summary of Maui

3. Actions

Subsections

● 3.1 Introduction
● 3.2 XML for Specifying an Action

❍ 3.2.1 Maui Compressed XML
❍ 3.2.2 Maui Verbose XML
❍ 3.2.3 Maui Built-In Actions

● 3.3 Writing Your Own Actions
❍ 3.3.1 The XMLObject Class
❍ 3.3.2 Example of a Custom Maui Action
❍ 3.3.3 Compiling Your Action
❍ 3.3.4 Configuring Maui to Find Your Action

● 3.4 Suggested Exercises
● 3.5 Summary

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node21.html [8/8/2003 4:02:40 PM]

3.1 Introduction

Next: 3.2 XML for Specifying Up: 3. Actions Previous: 3. Actions

3.1 Introduction
Thus far, we have seen how we can use XML to specify the data structures and parameters of an
application to create a custom GUI. One might be wondering ``now what do I do with the data in the
GUI?'' Within Maui there is the capability to write actions customized to your application. These actions
can be used to process some subset of the data (fields within a particular Class), or to process all the
data in the entire GUI. Additionally, Maui contains several built-in actions that you may wish to utilize.

As with other Maui GUI components, one must specify XML information about the action--which is
associated with a button--that should appear in the GUI. Maui parses this action information, renders a
button in the GUI to correspond with the action, and associates the button with some Java class which
will be responsible for carrying out the action. Your responsibility as the developer is to write the Java
code for the desired action. We have simplified the task of writing a Maui Action by providing a base
class and associated methods that take care of all of the internal details and leave only the specifics of the
desired action to the developer. In this chapter we will guide you through writing the input XML for
requesting an action. We will then show you how to write your own Action, as an extension of the
MauiAction class built into Maui.

Next: 3.2 XML for Specifying Up: 3. Actions Previous: 3. Actions

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node22.html [8/8/2003 4:02:41 PM]

3.2 XML for Specifying an Action

Next: 3.2.1 Maui Compressed XML Up: 3. Actions Previous: 3.1 Introduction

3.2 XML for Specifying an Action
When you wish to associate an action with the data fields in a Maui class, the Action XML elment is
used. At a bare minimum, the class and label attributes must be provided for an Action:

<Class type="MyClass">
 <Action class="TestAction" label="My Action"/>
 <Fields>
 .
 .
 .
 </Fields>
</Class>

Notice that an Action appears as a child of a Class element, but outside the Fields block. Think of
Maui Actions as class member functions, and the data within the Fields block as class member data.
An Action associated with a Class will only have access to the data within that Class.

There are other attributes that may be contained in an Action XML element: verbose, path,
package, toolTip, and mode. See Section B.6 for the description of each of these attributes.

In addition to the attributes the Action may use for configuration, an Action may contain an element
of your choice with other information to be passed to the MauiAction:

<Class type="MyClass">
 <Action class="TestAction" label="My Action">
 <Config color="red" width="100" length="100" />
 </Action>
 <Fields>
 .
 .
 .
 </Fields>
</Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node23.html (1 of 2) [8/8/2003 4:02:41 PM]

3.2 XML for Specifying an Action

The Config element defined inside the action is passed through to the MauiAction. You can parse
the information out of the Action XML for use in the doAction method of your custom action.

Of the attributes in the Action element, one of which to take note is the verbose attribute. One may
set the value of the verbose attribute to true or false. This setting defines whether the XML
representation of the data assoicated with this action should be rendered in Maui's ``verbose'' mode, or in
the ``compressed'' mode. If no verbose attribute is set, by default compressed
(verbose="false") is assumed. Compressed and verbose XML are discussed in detail in
Sections 3.2.1 and 3.2.2. The best way to view the XML in either mode is using the Maui built-in action,
ViewAction; ViewAction is used in Figure 3.1, and is described in Section 3.2.3.

Subsections

● 3.2.1 Maui Compressed XML
● 3.2.2 Maui Verbose XML
● 3.2.3 Maui Built-In Actions

Next: 3.2.1 Maui Compressed XML Up: 3. Actions Previous: 3.1 Introduction

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node23.html (2 of 2) [8/8/2003 4:02:41 PM]

3.2.1 Maui Compressed XML

Next: 3.2.2 Maui Verbose XML Up: 3.2 XML for Specifying Previous: 3.2 XML for Specifying

3.2.1 Maui Compressed XML

The Maui ``compressed'' XML is the version of output XML most likely to be used for processing the data entered in
the GUI. We refer to the XML as ``compressed'' because of how the XML used to generate the GUI is abridged when
translated into output XML.

None of the XML associated with display of the data in the GUI is retained in the compressed XML. This means that
information in CustomEditor and Action elements, as well as attributes such as label and useTab are
elimiated from the compressed XML.

Additionally, all Maui primitive types (Integer, Double, String, and Boolean) within a class instance are
contained as attributes of the class instance, instead of as child elements. For example, the following class definition
for a class named ExampleClass contains one primitive child, a String with the variable name
exampleString:

<Class type="ExampleClass">
 <Action class="TestAction" label="My Action" verbose="false"/>
 <Fields>
 <String name="exampleString" label="Enter a string"/>
 </Fields>
</Class>

If ``compressed'' XML is chosen (verbose="false") as the desired output by some Action associated with this
class, then an instance of the ExampleClass would be rendered as:

<ExampleClass exampleString="Here's a string!"/>

given that the user had typed Here's a string! in the GUI text box for the exampleString variable.

Other XML elements, such as class instances, Arrays, Tables, Comments, and AppData look much as they did
in the input XML, and are represented as elements within the output XML.

In Figure 3.1, we see input XML for Maui to generate the GUI seen in Figure 3.2. This XML is in the file in
$MAUI_HOME/Doc/tutorials/maui/XML/ActionIn.xml. Values have been entered in the resulting GUI
shown in Figure 3.2. The ``compressed'' output XML rendering of the data in Figure 3.2 is shown in Figure 3.3. A
copy of the compressed output XML is in the file
$MAUI_HOME/Doc/tutorials/maui/XML/ActionCompressedOut.xml.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node24.html (1 of 4) [8/8/2003 4:02:42 PM]

3.2.1 Maui Compressed XML

<Maui RootClass="MyActionExample">

 <Class type="MyActionExample">
 <Action class="Maui.Interface.ViewAction" label="View Compressed XML"
 verbose="false"/>
 <Action class="Maui.Interface.SaveAction" label="Save Inputs (verbose)"
 verbose="true"/>
 <Action class="Maui.Interface.SaveAction" label="Save Inputs (compressed)"
 verbose="false"/>
 <Action class="Maui.Interface.ReadAction" label="Read Inputs (from XML)"/>
 <Fields>
 <Point name="a" label="point A" useTab="false"/>
 <Array name="partsArr" label="Parts">
 <Master label="$partName ($materialName , $partLen in.)">
 <Part name="part"/>
 </Master>
 </Array>
 <Table name="inventory" label="Available Products">
 <Header name="product" label="$productName">
 <String name="productName" label="Product"/>
 <Double name="price" label="Price in $"/>
 </Header>
 </Table>
 <Reference name="refToPart" label="Part"
 path="partsArr" output="dereference"/>
 <Int name="num" label="Life, the Universe, and Everything" default="42"/>
 <Boolean name="liar" label="This statement is a lie" default="true"/>
 <String name="text" label="Famous last words" columnWidth="20"
 default="Hey, what's this red button do?"/>
 </Fields>
 </Class>

 <Class type="Part">
 <Fields>
 <String name="partName" label="name of part">
 <Menu options="bolt|nail|screw"/>
 </String>
 <String name="materialName" label="name of material"/>
 <Double name="partLen" label="length (in inches)"/>
 </Fields>
 </Class>

 <Class type="Point">
 <Fields>
 <Double name="x" label="x coordinate"/>
 <Double name="y" label="y coordinate"/>
 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node24.html (2 of 4) [8/8/2003 4:02:42 PM]

3.2.1 Maui Compressed XML

</Maui>

Figure 3.1:Maui input XML example of a Classthat uses Actions.

Figure 3.2:Maui GUI demonstrating Actionbuttons.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node24.html (3 of 4) [8/8/2003 4:02:42 PM]

3.2.1 Maui Compressed XML

<MyActionExample num="42" liar="true" text="Hey, what's this red button do?">
 <Point x="1.0" y="2.0"/>
 <Array name="partsArr">
 <Part partName="nail" partLen="2.25" materialName="wood"/>
 <Part partName="bolt" partLen="1.0" materialName="steel"/>
 <Part partName="bolt" partLen="0.5" materialName="screw"/>
 </Array>
 <Table name="inventory">
 <Entry price="2.99" productName="hammer"/>
 <Entry price="3.99" productName="saw"/>
 </Table>
 <Reference index="2" name="refToPart" path="partsArr">
 <Part partName="bolt" partLen="1.0" materialName="steel"/>
 </Reference>
</MyActionExample>

Figure 3.3:Maui compressed output XML example.

For this example we used almost all of the Maui data types to show how the Maui input XML (Figure 3.1) is
transformed into the Maui output XML (Figure 3.3) for each data type.

Note that an Action XML element may appear within any Class in the Maui input XML heirarchy. The
compressed XML rendering of the Class will only include data associated with the particular instance of the class
from which the action was performed (that is, from which the action button was pressed).

Next: 3.2.2 Maui Verbose XML Up: 3.2 XML for Specifying Previous: 3.2 XML for Specifying

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node24.html (4 of 4) [8/8/2003 4:02:42 PM]

3.2.2 Maui Verbose XML

Next: 3.2.3 Maui Built-In Actions Up: 3.2 XML for Specifying Previous: 3.2.1 Maui Compressed XML

3.2.2 Maui Verbose XML

The Maui ``verbose'' XML is primarily used for saving the current state of the GUI, and re-rendering a Maui GUI by
reading the verbose XML saved in a file. Because the use for which the verbose XML was designed was re-rendering the
GUI, Actions using verbose XML seem most useful when placed in the Maui RootClass. Recall that the
RootClass is the class that will appear in the main panel of the GUI, and is the class in which all other class instances
or other field data must be contained.

The verbose XML contains instance information for all data types within Maui. This instance information, coupled with
the corresponding Maui input XML, is enough information for Maui to re-render the appropriate GUI interface, with
default values for each instance that has been read from the verbose XML. The XML from which a Maui GUI was
originally rendered provides display information for the GUI, such as labels for each field, menu vs. text box components
for String data, and tabbed panes vs. un/collapsible frames to represent class instances. The verbose XML provides the
values for each instance within the GUI, information on the containment of that data (via the attribute ownerType), and
for class instances, information on where the class lies within an inheritance heirarchy (via the attribute base). Because
the ``verbose'' XML is not typically the format of the data you will be interested in using for manipulating field data for an
application, we will not spend more time here explaining the details of the verbose XML syntax.

You might use verbose XML if you were trying to update values in the GUI from data that is external to Maui. For
instance, if you would like to read some data saved in a text file (not in Maui XML format) into your GUI, you could
``create'' the verbose XML representation of the data. You could then insert the verbose XML you generated into the
verbose XML that comes out of the GUI. Finally, you could make calls to update the GUI with the new XML. See
Section 3.3.1 for details on how to manipulate the XML for such purposes.

In Figure 3.4, we see the output XML that would be produced in verbose mode based on the data entered in the GUI in
Figure 3.2. A copy of the verbose output XML is in the file
$MAUI_HOME/Doc/tutorials/maui/XML/ActionVerboseOut.xml.

<MyActionExample name="name0" altName="MyActionExample" base="MyActionExample"
ownerType="Maui">
 <Point name="a" altName="Point" base="Point" ownerType="MyActionExample">
 <Double default="1.0" name="x" ownerType="Point">
 </Double>
 <Double default="2.0" name="y" ownerType="Point">
 </Double>
 </Point>
 <Array name="partsArr">
 <Contents>
 <Item index="0">
 <Part name="part" altName="Part" base="Part" ownerType="MyActionExample">
 <String default="nail" name="partName" ownerType="Part">
 </String>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node25.html (1 of 3) [8/8/2003 4:02:42 PM]

3.2.2 Maui Verbose XML

 <String default="wood" name="materialName" ownerType="Part">
 </String>
 <Double default="2.25" name="partLen" ownerType="Part">
 </Double>
 </Part>
 </Item>
 <Item index="1">
 <Part name="part" altName="Part" base="Part" ownerType="MyActionExample">
 <String default="bolt" name="partName" ownerType="Part">
 </String>
 <String default="steel" name="materialName" ownerType="Part">
 </String>
 <Double default="1.0" name="partLen" ownerType="Part">
 </Double>
 </Part>
 </Item>
 <Item index="2">
 <Part name="part" altName="Part" base="Part" ownerType="MyActionExample">
 <String default="bolt" name="partName" ownerType="Part">
 </String>
 <String default="screw" name="materialName" ownerType="Part">
 </String>
 <Double default="0.5" name="partLen" ownerType="Part">
 </Double>
 </Part>
 </Item>
 </Contents>
 </Array>
 <Table name="inventory">
 <Header label="$productName" name="product">
 <String label="Product" name="productName"/>
 <Double label="Price in $" name="price"/>
 </Header>
 <Entries>
 <Entry>
 <Cell value="hammer" field="productName"/>
 <Cell value="2.99" field="price"/>
 </Entry>
 <Entry>
 <Cell value="saw" field="productName"/>
 <Cell value="3.99" field="price"/>
 </Entry>
 </Entries>
 </Table>
 <Reference index="2" name="refToPart" path="partsArr">
 <Part partName="bolt" partLen="1.0" materialName="steel"/>
 </Reference>
 <Integer default="42" name="num" ownerType="MyActionExample">
 </Integer>
 <Boolean default="true" name="liar" ownerType="MyActionExample">

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node25.html (2 of 3) [8/8/2003 4:02:42 PM]

3.2.2 Maui Verbose XML

 </Boolean>
 <String default="Hey, what's this red button do?" name="text" columnWidth="20"
ownerType="MyActionExample">
 </String>
</MyActionExample>

Figure 3.4:Maui verbose output XML example.

Next: 3.2.3 Maui Built-In Actions Up: 3.2 XML for Specifying Previous: 3.2.1 Maui Compressed XML

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node25.html (3 of 3) [8/8/2003 4:02:42 PM]

3.2.3 Maui Built-In Actions

Next: 3.3 Writing Your Own Up: 3.2 XML for Specifying Previous: 3.2.2 Maui Verbose XML

3.2.3 Maui Built-In Actions

Maui contains several built-in actions that you may use in your applications. When these actions do not
meet your needs, then you will also be able to write your own actions.

Notice that four Maui Actions are specified within the MyActionExample class in Figure 3.1. Also
note that though we are specifying four actions, only three different action classes (ViewAction,
SaveAction, and ReadAction) are used. The actions with the labels Save Inputs (verbose)
and Save Inputs (compressed) differ only in that the verbose attribute is set to true for one
and false for the other.

All of the Maui built-in actions are in package Maui.Interface. A description of Java packages is
not within the scope of this manual, so if you are unfamiliar with packages, refer to a Java reference for
information. To use a built-in Maui action, your Action specification within your Maui XML should
always contain a class attribute such as

class="Maui.Interface.MauiAction"

where MauiAction is the name of the built-in Maui action class you wish to use. There are many built-in
actions in the Maui.Interface package, but only a few of them might be of use to the Maui GUI
developer:

ReadAction
This action is used to read previously saved XML from a file for updating the current Maui GUI.
If you plan to let the GUI user save values they have entered into the GUI, then later (in another
Maui session, or just later this Maui session) read those saved values back into the GUI, this is the
action to use. ReadAction assumes that the XML being read (a) had been saved from the GUI for
this particular application at some point in the past, and (b) was saved in verbose mode (that is,
using the SaveAction with attribute verbose set to true).

SaveAction
This action is used to save to a file the current state of the data in a Maui GUI in either verbose
(verbose="true") or compressed (the default, or verbose="false") XML format.

SubmitAction
This action can be used to pass XML from the GUI to a piece of ``handler'' code. This action
predates the general use of MauiActions. Instead of using SubmitAction, we recommend that

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node26.html (1 of 2) [8/8/2003 4:02:42 PM]

3.2.3 Maui Built-In Actions

for any type of XML processing, you write your own MauiAction as an extension of the
MauiAction class.

ViewAction
This action is used to display the current state of the data in the GUI in either verbose or
compressed XML. The type of XML to be displayed is selected by using the verbose attribute.
Additionally, the mode attribute may be used to format the display. If no mode value is set, the
same XML that would be written to a file using the SaveAction is displayed in a pop-up window.
If mode is set to tree, then a collapsible view of the element containment tree is used for either
the verbose or compressed XML specified by the verbose attribute.

The ViewAction is helpful when developing action code that parses and manipulates the XML
data that comes out of Maui. The developer can see the format of the XML that will be produced
by Maui, and use the XML manipulation tools built into Maui to handle the XML. This has
advantages over using the SaveAction in that you can dynamically change your entries in the
GUI, and immediately view the changes to the output XML by using the ViewAction. This is
especially handy when one uses subclassing within the GUI (see Section 2.5).

The source code for all the Maui built-in actions can be found in
$MAUI_HOME/Java/src/Maui/Interface. The source for all these actions would be good
examples of how to develop actions as extensions of MauiAction.

Next: 3.3 Writing Your Own Up: 3.2 XML for Specifying Previous: 3.2.2 Maui Verbose XML

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node26.html (2 of 2) [8/8/2003 4:02:42 PM]

3.3 Writing Your Own Actions

Next: 3.3.1 The XMLObject Class Up: 3. Actions Previous: 3.2.3 Maui Built-In Actions

3.3 Writing Your Own Actions
As we have mentioned throughout this chapter, Maui provides an abstract class called MauiAction
from which a GUI developer can derive custom actions for the developer's application. MauiAction
contains a small number of predefined functions. See the javadoc documentation (on the web, or in the
directory $MAUI_HOME/Doc/javadoc/maui/Maui/Interface/MauiAction.html), as
well as the MauiAction source code (in
$MAUI_HOME/Java/src/Maui/Interface/MauiAction.java) for more information on the
MauiAction class.

The one method in MauiAction that you must extend in your derived class is
doAction(ActionEvent, XMLObject). This is where the meat of your action should go. You
can write additional helper methods in your derived class, but nothing besides doAction is required.

There are two parameters required by doAction. The ActionEvent is passed to the doAction by
the calling MauiActionButton. Unless you have specific reasons for wanting to get information
about the ActionEvent that triggered this action, you can ignore the contents of the ActionEvent
parameter in the substance of your doAction code.

The second parameter required by doAction is very important. Contained within the XMLObject
parameter of doAction is the verbose or compressed XML data that has been passed from the GUI
when the action was fired.

Subsections

● 3.3.1 The XMLObject Class
● 3.3.2 Example of a Custom Maui Action
● 3.3.3 Compiling Your Action
● 3.3.4 Configuring Maui to Find Your Action

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node27.html (1 of 2) [8/8/2003 4:02:42 PM]

3.3 Writing Your Own Actions

Next: 3.3.1 The XMLObject Class Up: 3. Actions Previous: 3.2.3 Maui Built-In Actions

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node27.html (2 of 2) [8/8/2003 4:02:42 PM]

3.3.1 The XMLObject Class

Next: 3.3.2 Example of a Up: 3.3 Writing Your Own Previous: 3.3 Writing Your Own

3.3.1 The XMLObject Class

XMLObject is a Maui class with utility methods for manipulating an XML object. There are many methods
within the XMLObject class for modifying and extracting information from existing XML objects, or for
creating XML objects. Thus we can add and remove attributes and children of an XMLObject as necessary
using the appropriate methods. The methods for accessing information tend to start with ``get,'' while most of the
creation method names start with ``add.'' To modify an existing XMLObject, use the methods with ``add'' and
``remove'' prefixes.

Note that XML attributes are represented as key/value string pairs. For example,("default","1.0") has
key default and value 1.0. Also, a child of an XMLObject is another XMLObject. In Figure 3.5 we show
some examples of generating XMLObjects. In Figure 3.6 we see the XML that would be generated by the code
in Figure 3.5. In Figure 3.7 we see methods used to access values in the XMLObject in Figures 3.5 and 3.6.
Finally, Figure 3.8 shows the screen output from the System.out.println calls in Figure 3.7.

/* Create a new XMLObject with the tab "myObject" */
XMLObject obj = new XMLObject("myObject");

/* Add an attribute to the "myObject" XML */
obj.addAttribute("name", "joe");

/* Create a new XMLObject that will be the child of "myObject" */
XMLObject kid = new XMLObject("myChild");

/* Add an attribute to the child. */
kid.addAttribute("age", "5");

/* Add kid to obj as a child. */
obj.addChild(kid);

Figure 3.5:Example of using the creation methods in the XMLObjectclass.

<myObject name="joe">
 <myChild age="5"/>
</myObject>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node28.html (1 of 2) [8/8/2003 4:02:43 PM]

3.3.1 The XMLObject Class

Figure 3.6:Example of XML representation of XMLObjectin Figure 3.5.

/* Print out the XML object, "obj." Also print out the tag associated with
 "obj" and the value associated with the attribute "age" of "kid." */

String tag = obj.getTag();
String years = obj.getChild("myChild").getAttribute("age");
System.out.println("The XML object contained in obj:\n"
 + obj.toString() + "\n\n");
System.out.println("The value of the tag is " + tag
 + " and age = " + years);

Figure 3.7:Example of using the accessor methods in the XMLObjectclass.

The XML object contained in obj:
<myObject name="joe">
 <myChild age="5"/>
</myObject>

Figure 3.8:Screen output from running the code snippets in Figures 3.5and 3.7.

See the javadoc documentation (on the web, or in the directory
$MAUI_HOME/Doc/javadoc/idea/XML/XMLObject.html), as well as the XMLObject source code
(in $MAUI_HOME/Java/src/XML/XMLObject.java) for more information on the XMLObject
methods.

Next: 3.3.2 Example of a Up: 3.3 Writing Your Own Previous: 3.3 Writing Your Own

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node28.html (2 of 2) [8/8/2003 4:02:43 PM]

3.3.2 Example of a Custom Maui Action

Next: 3.3.3 Compiling Your Action Up: 3.3 Writing Your Own Previous: 3.3.1 The XMLObject Class

3.3.2 Example of a Custom Maui Action

We should now have enough information to generate an example custom Action. In the following Java
code we see the definition of a class, TestAction, derived from MauiAction. TestAction
contains a doAction method that prints out the XML rendering of the GUI data, and some information
depending on the output style (verbose or compressed). This action uses several of the methods in
the XMLObject class. Additionally, it makes a call to the requiresVerboseXML method, which is
inherited by the TestAction class from MauiAction.

/* If this action is part of a package, place the package command here. */

import Maui.Interface.*;
import XML.*;
import java.awt.event.*;
import javax.swing.JOptionPane;

/** This is an example of a custom MauiAction. It extends the base
 * class, MauiAction. The actual work is done in the doAction method.
 */
public class TestAction extends MauiAction
{
 /** The method that carries out the work of the action. In this
 * case, it merely prints out a message in a JOptionPane
 *
 * @param e an Action event that triggers this method
 * @param body The XML object representing the state of the GUI
 * when the action is performed.
 */

public void doAction(ActionEvent e, XMLObject body)
{
 String msg = "In TestAction: The XML generated by this GUI is:\n\n"
 + body.toString()
 + "\n***\n";

 /* if the button with "verbose" is selected: */
 if(requiresVerboseXML())
 {

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node29.html (1 of 3) [8/8/2003 4:02:43 PM]

3.3.2 Example of a Custom Maui Action

 XMLObject pointObj= body.getChild("Point");
 int numPointKids = pointObj.numChildren();
 int doubleCount = 0;

 for(int i = 0; i < numPointKids; i++)
 {
 XMLObject pointChild = pointObj.getChild(i);
 if(pointChild.getTag().equals("Double"))
 doubleCount++;
 }
 msg = msg.concat("Verbose XML: The Point child of MyActionExample "
 + "contains " + doubleCount
 + " Double elements.\n");
 }
 /* otherwise, if "compressed" is selected: */
 else
 {
 int numBodyAttributes = body.numberOfAttributes();

 msg = msg.concat("Compressed XML: The MyActionExample element has "
 + numBodyAttributes + " attributes:\n"
 + "\tnum = " + body.getAttribute("num") + "\n"
 + "\tliar = " + body.getAttribute("liar") + "\n"
 + "\ttext = " + body.getAttribute("text") + "\n\n");

 XMLObject arrayObj = body.getChild("Array");
 int numParts = arrayObj.getChildren("Part").length;

 msg = msg.concat("Compressed XML: The MyActionExample element has "
 + numParts + " Parts elements\n"
 + "in the Array child element.\n");
 }

 /* Display the information we've gathered in a JOptionPane when the
 Action button has been pushed. */
 JOptionPane.showMessageDialog(null, msg, "TestAction",
JOptionPane.INFORMATION_MESSAGE);
 }

/* We want to be able to run the action without requiring that the
 user has entered any data into the GUI (even in the required fields...).
 So we override this method to return false, thus allowing the
 "doAction" to proceed even without all the required input. */
public boolean requiresValidXML()

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node29.html (2 of 3) [8/8/2003 4:02:43 PM]

3.3.2 Example of a Custom Maui Action

 { return false; }
}

Figure 3.8.1 Custom Maui Action

See $MAUI_HOME/Doc/tutorials/maui/Java/TestAction.java for the code from the
example action (above). The TestAction.java code can be used as a template for writing your
actions.

The Java code can be placed anywhere within your directory structure, and may optionally be part of a
Java package. Your Action class must be derived from the MauiAction class, and therefore must
import the appropriate files. At a minimum, you must import Maui.Interface.* to get the
MauiAction class definition, XML.* to get the XMLObject class definition, and
java.awt.event.* to get the ActionEvent class definition.

As we mentioned before, the only method you must override in your Action class is the doAction.
We have additionally overrided the requiresValidXML method so that when the GUI user pushes
the button to execute the action, the action is executed whether or not the user has entered all the non-
optional data, and whether or not the data is of the correct type.

Next: 3.3.3 Compiling Your Action Up: 3.3 Writing Your Own Previous: 3.3.1 The XMLObject Class

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node29.html (3 of 3) [8/8/2003 4:02:43 PM]

3.3.3 Compiling Your Action

Next: 3.3.4 Configuring Maui to Up: 3.3 Writing Your Own Previous: 3.3.2 Example of a

3.3.3 Compiling Your Action

To compile the code, first make sure that you are in the directory where TestAction.java is located
($MAUI_HOME/Doc/tutorials/maui/Java/). Then type the command

 UNIX:
 javac -classpath .:$MAUI_HOME/Java/classes/maui.jar:\
 $MAUI_HOME/Java/classes/xerces.jar TestAction.java
 WINDOWS:
 javac -classpath .;"%MAUI_HOME%\Java\classes\maui.jar";
 "%MAUI_HOME%\Java\classes\xerces.jar"
 "%MAUI_HOME%\Doc\tutorials\maui\Java\TestAction.java"

(NOTE: Because the command is too long to fit on one line, it has been separated it into multiple lines to
make the command easier to read. However, for Windows to execute this command, the entire command
must be typed on one line.)

Next: 3.3.4 Configuring Maui to Up: 3.3 Writing Your Own Previous: 3.3.2 Example of a

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node30.html [8/8/2003 4:02:43 PM]

3.3.4 Configuring Maui to Find Your Action

Next: 3.4 Suggested Exercises Up: 3.3 Writing Your Own Previous: 3.3.3 Compiling Your Action

3.3.4 Configuring Maui to Find Your Action

To enable Maui to use your new action, you must now include the appropriate Action XML element in your Maui
input XML. In Figure 3.9, we use a modified version of the XML in Figure 3.1. The XML file that uses the
TestAction is in $MAUI_HOME/Doc/tutorials/maui/XML/ActionIn2.xml. This new XML contains
two actions, labeled Test Action (verbose) and Test Action (compressed). The class used for both
actions is the TestAction we just wrote, but one action requires verbose XML, while the other requires
compressed XML. Figure 3.10 shows the results of pressing the Test Action (compressed) button in the
resulting GUI.

<Maui RootClass="MyActionExample">

 <Class type="MyActionExample">
 <Action class="TestAction" label="Test Action (verbose)"
 verbose="true"/>
 <Action class="TestAction" label="Test Action (compressed)"
 verbose="false"/>
 <Fields>
 <Point name="a" label="point A" useTab="false"/>
 <Array name="partsArr" label="Parts">
 <Master label="$partName ($materialName , $partLen in.)">
 <Part name="part"/>
 </Master>
 </Array>
 <Reference name="refToPart" label="Part"
 path="partsArr" output="dereference"/>
 <Int name="num" label="Life, the Universe, and Everything" default="42"/>
 <Boolean name="liar" label="This statement is a lie" default="true"/>
 <String name="text" label="Famous last words" columnWidth="20"
 default="Hey, what's this red button do?"/>
 </Fields>
 </Class>

 <Class type="Part">
 <Fields>
 <String name="partName" label="name of part">
 <Menu options="bolt|nail|screw"/>
 </String>
 <String name="materialName" label="name of material"/>
 <Double name="partLen" label="length (in inches)"/>
 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node31.html (1 of 3) [8/8/2003 4:02:44 PM]

3.3.4 Configuring Maui to Find Your Action

 <Class type="Point">
 <Fields>
 <Double name="x" label="x coordinate"/>
 <Double name="y" label="y coordinate"/>
 </Fields>
 </Class>

</Maui>

Figure 3.9:Maui input XML using our new TestAction.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node31.html (2 of 3) [8/8/2003 4:02:44 PM]

3.3.4 Configuring Maui to Find Your Action

Figure 3.10:Maui GUI demonstrating result of pressing the Test Action (compressed)Button.

There are three ways to tell Maui where to find the TestAction class you compiled. See Section 5.4 in Chapter 5,
Configure Maui for the full details on specifying path and package information to Maui for loading custom classes.

Next: 3.4 Suggested Exercises Up: 3.3 Writing Your Own Previous: 3.3.3 Compiling Your Action

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node31.html (3 of 3) [8/8/2003 4:02:44 PM]

3.4 Suggested Exercises

Next: 3.5 Summary Up: 3. Actions Previous: 3.3.4 Configuring Maui to

3.4 Suggested Exercises
1. Add an XML element inside your XML Action that contains some sort of configuration

information for your extension of MauiAction. An example is

 <Action class="TestAction" label="My Action">
 <Config color="red" width="100" length="100" />
 </Action>

Use the XMLObject methods to extract the values from the attributes (for example, color,
width, and length). Note that the Config element in the example above is a child element of
the Action XML. The Action XMLObject is contained in the config_ field of the
MauiAction class.

2. Using the XML in Figure 3.9 (the XML is also contained in the file
$MAUI_HOME/Doc/tutorials/maui/XML/ActionIn2.xml), try moving the Action
XML for the TestAction inside the Part class or the Point class. View the GUI and the
result of pressing the action buttons. So that the messages printed by the action reflect the new
location of the buttons, modify the doAction method in TestAction.java (see
$MAUI_HOME/Doc/tutorials/maui/Java/TestAction.java) to get information
about the fields specific to the Part or Point class.

Next: 3.5 Summary Up: 3. Actions Previous: 3.3.4 Configuring Maui to

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node32.html [8/8/2003 4:02:44 PM]

3.5 Summary

Next: 4. Custom Editors Up: 3. Actions Previous: 3.4 Suggested Exercises

3.5 Summary
This chapter has covered information on the process of developing actions customized to the data for a
Maui GUI. The developer is responsible for generating the appropriate Java code for executing the
action, as well as placing the appropriate XML Action in the Maui input file.

Next: 4. Custom Editors Up: 3. Actions Previous: 3.4 Suggested Exercises

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node33.html [8/8/2003 4:02:44 PM]

4. Custom Editors

Next: 4.1 Introduction Up: A Maui User's Guide Previous: 3.5 Summary

4. Custom Editors

Subsections

● 4.1 Introduction
● 4.2 Using a Custom Editor: The FilenameEditor for Strings
● 4.3 Writing Your Own Custom Editors

❍ 4.3.1 The Structure of Maui Data
❍ 4.3.2 Steps to Writing Your Own Custom Editor
❍ 4.3.3 Example of a Maui Custom Editor
❍ 4.3.4 Compiling Your Custom Editor
❍ 4.3.5 Configuring Maui to Find Your Custom Editor

● 4.4 Summary

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node34.html [8/8/2003 4:02:44 PM]

4.1 Introduction

Next: 4.2 Using a Custom Up: 4. Custom Editors Previous: 4. Custom Editors

4.1 Introduction
As you have seen, Maui has a default way to display all of its data objects. For example, integers,
doubles, and strings are typically rendered as a text areas, where the user enters a value by typing in the
text area. Even though Maui has default ways of representing many data types in the GUI, you can
choose to create your own display mechanism for any data object by writing a custom editor. Custom
editors can make it possible for you to enter a path to a file using a file browser rather than by typing in
the path string, or to set the value of an integer by using a slider bar. In this chapter we show you how
you can use a custom editor that is already built into Maui, and how you can create such custom editors
for your own applications. First, we give an example of using the file browser custom editor for a
String. Then we will demonstrate how to write your own custom editor. Writing your own custom
editor requires some familiarity with Java Swing components, and it helps to understand in a little more
detail the underlying data structures in Maui. We assume that you do know Java Swing; we will briefly
discuss Maui's structure as it pertains to writing custom editors later in this chapter. We then discuss in
some detail the example custom editor presented in section 4.3.3.

Next: 4.2 Using a Custom Up: 4. Custom Editors Previous: 4. Custom Editors

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node35.html [8/8/2003 4:02:44 PM]

4.2 Using a Custom Editor: The FilenameEditor for Strings

Next: 4.3 Writing Your Own Up: 4. Custom Editors Previous: 4.1 Introduction

4.2 Using a Custom Editor: The
FilenameEditor for Strings
Built into Maui is a String editor, called FilenameEditor, defined by the Java code in
$MAUI_HOME/Java/src/Maui/Editors/FilenameEditor.java. By default, a String
XML object is rendered as a text box, unless the String element contains a Menu element. However, if
the intention of the developer is to have the String entry represent a path to a file, then the
FilenameEditor can be accessed as a CustomEditor. The FilenameEditor provides the user
with a file browser for locating the desired file.

To use a custom editor for any type of Maui object, a CustomEditor XML element must be contained
within the Maui data element that requires the custom editor. The CustomEditor element points to the
Java class with which that editor may be represented. In Figure 4.1, we see an example of how to specify
that the FilenameEditor representation of a String should be used, instead of any of the standard
String editors. Figure 4.2 shows the GUI rendering of a String with a FilenameEditor custom
editor. When the user clicks on the Browse button, the file dialog box appears.

<String name="TestFilename" label="filename" default="">
 <CustomEditor name="Maui.Editors.FilenameEditor">
 <folderName default="c:/junk"/>
 <filename default="junk.gif"/>
 <openOrSaveFile default="open"/>
 <title default="Select a file"/>
 <filenameExtensions default="gif jpg jpeg"/>
 <onErrorRedisplayFileDialogBox default="no"/>
 </CustomEditor>
</String>

Figure 4.1:Example of XML specification of the CustomEditorfor a String; the custom editor is
defined in the FilenameEditor.javafile.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node36.html (1 of 4) [8/8/2003 4:02:45 PM]

4.2 Using a Custom Editor: The FilenameEditor for Strings

Figure 4.2:Pressing the browsebutton will pop up a file dialog box.

The XML used to specify a CustomEditor must contain a name attribute that points to the
appropriate custom editor class. This name attribute may be qualified to specify a classpath to where the
Java class for the CustomEditor can be found. See Section 5.4 for information on configuring paths
in Maui custom classes. In Figure 4.1, Maui.Editor.FilenameEditor is specified as the class to
be used. Any additional configuration information for the custom editor can be passed to the custom
editor code as children elements of the CustomEditor XML element. The custom editor developer
can decide what information should be passed to the custom editor, and how to format that in the XML
for the custom editor. The FilenameEditor.java code has been written in such a way that
folderName, filename, openOrSaveFile, title, filenameExtensions, and
onErrorRedisplayFileDialogBox are child elements within the CustomEditor XML that
might be passed on and parsed by FilenameEditor.java. In the FilenameEditor.java code,
none of these elements is required to have been specified in the XML. All these elements have default
values.

If the GUI developer writing a Maui XML application specification wishes to use the

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node36.html (2 of 4) [8/8/2003 4:02:45 PM]

4.2 Using a Custom Editor: The FilenameEditor for Strings

FilenameEditor, the following describes what values are expected in the default attribute for
each possible XML element:

folderName
If this element is defined, the default attribute should contain the name of the folder that is
selected when the file dialog box is initially displayed on the screen. This setting can be
overridden by inserting the name of a file (with path) into the default attribute of the String
tag. For example,

<String name="TestFilename" label="filename"
 default="/home/somebody/anyFilename">

is the same as setting

<folderName default="/home/somebody"/>.

If no folderName element is specified, then the default directory, dependant on your system, will
be selected and displayed in the file dialog box.

filename
If this element is defined, the default attribute should contain the filename that is selected
when the file dialog box is initially displayed on the screen. This setting can be overridden by
inserting the name of a file (fully qualified path or relative path) into the String tag. For
example,

<String name="TestFilename" label="TestFilename"
 default="/home/somebody/anyFilename">

is the same as setting

<folderName default="/home/somebody"/>
<filename default="anyFilename"/>

or just

<filename default="/home/somebody/anyFilename"/>.

If no filename element is specified, then the name of the default directory, dependant on your
system, will be selected and displayed in the file name text box in the file dialog box.

openOrSaveFile

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node36.html (3 of 4) [8/8/2003 4:02:45 PM]

4.2 Using a Custom Editor: The FilenameEditor for Strings

If this element is defined, the default attribute for openOrSaveFile should be set to either
open or save. If set to save, then the file dialog box will prompt the user to save a file. If set to
open, then the file dialog box will prompt the user to select a file to open, given that that file
already exists. If an openOrSaveFile element is not defined for this custom editor, then the dialog
will default to open.

title
If this element is defined, the default attribute should be set to words that will appear in the
file dialog box's titlebar. If this element is not provided, then there will not be a title for the dialog
box.

filenameExtension
If this element is defined, the default attribute should be set to a space delimited list of
filename extensions. filenameExtension is used to control which filenames are made visible in
the file dialog box. For example, to see all filenames in the selected folder, set filenameExtension
default attribute to "". To see only gif and jpg files, set filenameExtension default
attribute to "gif jpg jpeg". If the filenameExtension element is not specified, all files in the
directory will be shown by default.

onErrorRedisplayFileDialogBox
If this element is defined, the default attribute for onErrorRedisplayFileDialogBox should be
set to either yes or no. If set to yes, and if the end-user makes an error entering a file name,
then an error message will pop up on the screen; the error message will ask the end-user if he/she
wants to try again. If the end-user says yes then the file dialog box is redisplayed on the screen.
If set to no, and if the end-user makes an error entering a file name, then no error message will
appear on the screen. By default yes is chosen if the onErrorRedisplayFileDialogBox element is
not specified.

Maui provides the FilenameEditor as a custom editor for String data that represents a path to a
file. In this section you have learned how to specify the XML for using the FilenameEditor.

You can write your own custom editor for any of the Maui data types. In the next section we address the
three tiers of Maui classes used to represent data in Maui. With this information and the example in
Section 4.3.3, you will be prepared to write your own custom editors.

Next: 4.3 Writing Your Own Up: 4. Custom Editors Previous: 4.1 Introduction

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node36.html (4 of 4) [8/8/2003 4:02:45 PM]

4.3 Writing Your Own Custom Editors

Next: 4.3.1 The Structure of Up: 4. Custom Editors Previous: 4.2 Using a Custom

4.3 Writing Your Own Custom Editors
To write your own custom editor, you need to first define the parameters that you wish to pass to your
custom editor through the XML. In Section 4.2, we saw that the writer of the FilenameEditor class
chose folderName, filename, openOrSaveFile, title, filenameExtensions, and
onErrorRedisplayFileDialogBox as parameters to be passed to the FilenameEditor code.
You will be responsible for deciding what parameters make sense for your editor, and for defining these
parameters in XML for your custom editor.

Once your XML specification is established, you can then create a custom editor class. In Section 4.3.1
we will talk about the data heirarchy used in Maui to represent data, and how to navigate this heirarchy to
define your custom editor. A custom editor in Maui should be a class that derives from the
EditorBase class at the Editors level of the data heirarchy.

In Section 4.3.2 we describe in general how to write a custom editor. This includes description of the
methods that must be implemented in your custom editor as a result of your custom editor deriving from
the EditorBase class.

Finally, in Section 4.3.3 we have provided an example Java class that defines a slider bar custom editor
for an integer. Comments within the code describe the function of various methods in the class.

Subsections

● 4.3.1 The Structure of Maui Data
● 4.3.2 Steps to Writing Your Own Custom Editor
● 4.3.3 Example of a Maui Custom Editor
● 4.3.4 Compiling Your Custom Editor
● 4.3.5 Configuring Maui to Find Your Custom Editor

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node37.html (1 of 2) [8/8/2003 4:02:45 PM]

4.3 Writing Your Own Custom Editors

Next: 4.3.1 The Structure of Up: 4. Custom Editors Previous: 4.2 Using a Custom

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node37.html (2 of 2) [8/8/2003 4:02:45 PM]

4.3.1 The Structure of Maui Data

Next: 4.3.2 Steps to Writing Up: 4.3 Writing Your Own Previous: 4.3 Writing Your Own

4.3.1 The Structure of Maui Data

Maui has a three-layer data structure with classes for each layer. We begin this section with a brief
overview of each.

Variables:
This first layer holds the information describing each variable in your XML file. A Maui variable
is described by a variable type, which is the tag of the XML element that represents the variable in
the XML file. A variable is also uniquely described within a class by a name, which is extracted
from the name attribute of the Maui XML instance element. Defined by optional XML attributes
and elements, the variable also contains labeling information (in the label attribute), a flag
specifying if data must be provided (in the optional attribute), tool tip information (in the
toolTip attribute), custom editor or application data, the XML used to define this variable, and
finally, the default value of the variable (in the default attribute of primitive variables).
Depending on the type of the variable, other information may be required.

The class containing this minimum amount of information for all variable types is called
VarBase. The VarBase class is defined within the Maui.Variables package4.1. Within the
Maui.Variables package, all of the other classes for holding variables derive from
VariableBase. Each class derived from VarBase corresponds to a Maui variable type. For
example, PrimitiveVar derives from VarBase, and IntegerVar, DoubleVar, and
BooleanVar all derive from PrimitiveVar. Once a VarBase object has been instantiated,
none of its data is ever changed. VarBase and the classes that derive from VarBase contain
many methods for accessing the data stored at the creation of a VarBase object.

Instances:
Since VarBase objects are never changed after they have been initialized, the current value of
each variable (based on user input to the GUI) must be stored somewhere other than VarBase.
The object that stores the current data corresponding to a VarBase object is derived from the
InstanceBase class in the Maui.Instances package. Besides holding the current value
corresponding to a variable, the InstanceBase object acts a mediator between the variable
object and the GUI editor object for the variable.

As with VarBase there are instance classes for each Maui variable type, and these instance
classes correspond to the VarBase objects. For each instance of an object derived from

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node38.html (1 of 2) [8/8/2003 4:02:46 PM]

4.3.1 The Structure of Maui Data

InstanceBase, there is a corresponding variable object. Additionally, for each instance object
there is an corresponding editor object.

Editors:
The third layer of the Maui data structure is designed to display and allow editing of each instance
of a variable. Thus, there will be an EditorBase object for each InstanceBase object. The
editor is the GUI component that the end-user sees. Each Maui data type has a default editor to
display it. For example, as noted above, all primitive types are edited by default using a
JTextField, which is contained in the DefaultPrimitiveEditor class. However, if in
the XML definition of a variable instance a CustomEditor is specified, Maui will instead try to
load the code corresponding to the CustomEditor, and render the instance of this variable as
the CustomEditor GUI component. In Section 4.3.2 we describe the steps to overriding the
default EditorBase object with a custom editor.

The three-way split of variable, instance, and editor objects makes it easy, in principle, to replace the
default EditorBase object for an variable type with a custom editor. So what does the EditorBase
object need to do? In part the editor must provide a display and editing capability. Additionaly, once data
has been entered or changed in the displayed GUI component, the editor must then update its
corresponding InstanceBase object with the new value that has been obtained. An editor must also
be able to update its values from an XMLObject4.2 so that the editor updates its display and value
properly when saved data is read back in from a file4.3. An editor object must also have methods to store
the current data in the editor, and restore that state. Finally, an editor object should be able to update its
``look and feel'' based on changes to the appearance settings. In section 4.3.3, we give an example of a
complete custom editor; we comment on the features of custom editors in Section 4.3.2.

Next: 4.3.2 Steps to Writing Up: 4.3 Writing Your Own Previous: 4.3 Writing Your Own

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node38.html (2 of 2) [8/8/2003 4:02:46 PM]

4.3.2 Steps to Writing Your Own Custom Editor

Next: 4.3.3 Example of a Up: 4.3 Writing Your Own Previous: 4.3.1 The Structure of

4.3.2 Steps to Writing Your Own Custom Editor

To write your own custom editor, you need to create a class that extends EditorBase. Additionally
you need to implement the abstract methods of EditorBase. In the example in Section 4.3.3, we
create a custom editor that uses a slider bar for representating an integer variable.

If you plan to create a custom editor, you should study the code in Section 4.3.3 carefully and use this
code as a template to create your own editor. First, several points must be made:

1. Your custom editor class derives from EditorBase.
2. Any class derived from EditorBase will be a JPanel, since EditorBase derives from

JPanel. Therefore, any calls to the add method will add a component, such as a JSlider, to
the EditorBase JPanel.

3. Because EditorBase is abstract, you must implement its abstract methods in your derived
class. The abstract methods in EditorBase are

❍ void setValue(Vector)
❍ void setValue(Vector, boolean)
❍ void updateValue(XMLObject, Vector, boolean)
❍ void addElementsFromXML(XMLObject, Vector, boolean)
❍ void storeValue()
❍ void restoreSavedValue()
❍ void refreshLookAndFeel()

See the Javadoc documentation on each of these methods.
4. In addition to implementing the abstract methods, you will also want to write your own version of

the method init. It is not an abstract method, but it is the place to put the code to implement
your custom GUI component (i.e. the custom editor). This is the method called by the instance
classes (derived from InstanceBase) when the variable has been found to have a custom
editor. The example in the next section shows how to do this.

Next: 4.3.3 Example of a Up: 4.3 Writing Your Own Previous: 4.3.1 The Structure of

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node39.html [8/8/2003 4:02:46 PM]

4.3.3 Example of a Maui Custom Editor

Next: 4.3.4 Compiling Your Custom Up: 4.3 Writing Your Own Previous: 4.3.2 Steps to Writing

4.3.3 Example of a Maui Custom Editor

Now that we have laid the foundation for writing a custom editor, let's write one. In the following code example we
have designed a custom editor class, SliderEditor, that graphicallly represents an integer with a slider bar. We
followed the guidelines laid out in Section 4.3.2 to develop our class. Here are a few things to note before looking at
the code:

1. All of the code to implement the slider (JSlider) is contained in the init method. Since SliderEditor
extends EditorBase,and EditorBase extends JPanel, the calls to the add method at the end of init
method are adding the label and slider components to this JPanel.

2. The SliderEditor class uses methods and public instance variables from InstanceBase,
PrimitiveInstance, VarBase, XMLObject, EditorBase and EditorSettings. You can look at
the Javadoc for the detailed API.

3. Many additional features of sliders could be added. Note that upper, lower, and default are attributes of
the Integer XML element, and that we cannot add more attributes to an Integer to enable other features of
JSlider. We can, however, add additional configuration information for the SliderEditor to the
CustomEditor block in the XML. An example is given in Figure 4.3. You should look carefully at the
detailed comments in the code. You should also pay particular attention to how the CustomEditor block in
the XML is accessed and read. in the init method.

4. Methods particular to the SliderEditor are described in the comments preceding each method.

To use this class, you must include the appropriate XML specification for the custom editor in your XML file.
Figure 4.3 shows a simple example that uses the SliderEditor. Figure 4.3.3 shows how the SliderEditor is
rendered in the GUI.

<Maui RootClass="sliderTest">
 <Class type="sliderTest" label="Slider Test">
 <Fields>
 <Integer name="x" label="Slider Integer"
 lower="1" upper="20" default="3">
 <CustomEditor name="SliderEditor">
 <Properties majorTickSpacing="5" orientation="vertical"/>
 <Slabel location="1" string="1"/>
 <Slabel location="3" string="Default"/>
 <Slabel location="20" string="20"/>
 </CustomEditor>
 </Integer>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (1 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

Figure 4.3:Maui input XML example of specifying a CustomEditorfor an Integer.

Figure 4.4:How Maui renders the slider specified in the XML.

In this example, we have specified the name of the CustomEditor, but we have not specified the path and
package for SliderEditor. This can be done in the XML file, or you could add this information using the
``Configure Maui'' button, or you could do nothing and let Maui query you to locate the SliderEditor class file.
See Section 5.4 where we describe how Maui can locate your custom editor class.

At this point you need to know exactly what happens to the CustomEditor block of the XML. Since we can't know
in general what information will be contained in such a block, Maui simply passes all of it along to the VarBase
object where it is stored intact. The only check on the block is to assure that it is valid XML; if not, it will be flagged at
the time the entire Maui input XML file is read. The CustomEditor block can be retrieved by the new custom
editor. Look carefully at the init method in the example to see how this is done.

Following is the complete code for the SliderEditor class. A copy of this file can be found in
$MAUI_HOME/Doc/tutorials/maui/Java/SliderEditor.java.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (2 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

/**
 This class is a custom editor for an integer. It allows an integer
 variable to be adjusted with a slider bar rather than by typing a
 value in a text field. Note that the XML to use this is a CustomEditor
 block that has a required name="SliderEditor" attribute and optional
 path and package attributes to designate the location of this class.
 The CustomEditor XML block for the SliderEditor is also assumed to have a
 child named Properties that can have attributes of "majorTickSpacing"
 and "orientation". This block can be expanded with other attributes
 corresponding to settings in JSlider. The CustomEditor block can also have
 as many children as you like named Slabel. Each of these children has
 attributes corresponding to the location on the sliding scale and a
 string to display at that location. See SliderEditor.xml in
 $MAUI_HOME/Doc/tutorials/maui/XML for the CustomEditor input for this
 editor.
*/

import XML.*; // Access to XMLObject class
import Maui.Instances.*; // Access to InstanceBase. IntegerInstance classes
import Maui.Editors.*; // Access to EditorBase, EditorSettings classes
import Maui.Interface.*; // Access to MauiMainPane
import java.util.*; // Access to Vector, Hashtable classes
import java.awt.*; // Access to Color class
import javax.swing.*; // Access to JSlider, JLabel, BoxLayout,
 // BorderFactory, Box classes

public class SliderEditor extends EditorBase
{
 //===
 //SliderEditor data members:

 /* The JSlider Swing component. */
 JSlider slider_;

 /* The JLabel component to hold the label on the slider. */
 JLabel label_;

 /* The minimum value for the slider variable. */
 int min_;

 /* The maximum value for the slider variable. */
 int max_;

 /* An int to hold the saved value for use in restoring. */
 int savedValue_;

 /* A boolean to indicate if a value has been saved. */
 boolean isSaved_;

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (3 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

 /* A String to hold the label corresponding to savedValue_. */
 String savedLabel_;

 /* The IntegerInstance corresponding to the integer variable. */
 IntegerInstance intInstance_;

 //===
 // SliderEditor methods:

 //---
 /**
 A null constructor that is necessary to allow this class to be
 easily loaded and instantiated.
 */
 public SliderEditor() {}

 //---
 /**
 This method only matters if we are adding to an Array or a Table.
 See documentation for addElementsFromXML in EditorBase.
 */
 public void addElementsFromXML(XMLObject xml, Vector failureList,
 boolean checkValue)
 { /* nothing to do, since this
 is not an editor for an Array or Table */ }

 //---
 /**
 Gets the necessary values for creating the JSlider, instantiates
 the slider, and adds the slider to the current JPanel (i.e. "this").

 @param mainPane the MauiMainPane holding this session.
 @param instance the IntegerInstance object for the integer
 to be adjusted.
 */
 public void init(MauiMainPane mainPane, InstanceBase instance)
 {
 super.init(mainPane, instance);
 intInstance_ = (IntegerInstance) instance;
 isSaved_ = false;

 /*
 Get some values stored in the VarBase object. The only values
 that can be here are the max, min and default, since these are
 XML attributes associated with an Integer variable. Note:
 we assume that these attributes have been specified in the
 definition of the Integer. This code could be easily

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (4 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

 modified to check values and specify defaults.
 */
 max_ = instance.myVar_.getDefiningXML().getInt("upper");
 min_ = instance.myVar_.getDefiningXML().getInt("lower");
 int value = instance.myVar_.getDefiningXML().getInt("default");

 /* Instantiate the slider. */
 slider_ = new JSlider(min_, max_, value);

 /*
 Get the XMLObject for the CustomEditor settings. The XML is
 stored in the VarBase object that corresponds to this editor
 (and corresponds to the IntegerBase object).
 */
 XMLObject customEdSettings = instance.myVar_.getCustomEditorSettings();

 /*
 Access the attributes and children of customEdSettings to
 get the set up information for the slider. Again, we
 assume that these attributes have been set and that there
 is at least one label; the code could be easily extended to
 make default decisions or do error checking.
 */

 /*
 First, get the orientation and major tick spacing from the
 Properties XML.

 Example XML:

 <Properties majorTickSpacing="5" orientation="vertical"/>

 Use this information to set up orientation and tick spacing in the
 slider.
 */
 String orient = customEdSettings.getChild("Properties").
 getAttribute("orientation");
 if (orient.equals("vertical"))
 slider_.setOrientation(JSlider.VERTICAL);

 int majorTickSpacing = customEdSettings.getChild("Properties").
 getInt("majorTickSpacing");
 slider_.setMajorTickSpacing(majorTickSpacing);
 slider_.setPaintTicks(true);

 /* Get any slider label information. From any Slabel XML elements
 in the CustomEditor XML:

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (5 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

 Example XML:

 <Slabel location="1" string="1"/>
 (etc.)
 <Slabel location="20" string="20"/>

 Use this information to set up labels along the slider.
 */
 Hashtable labelTable = new Hashtable();
 int numKids = customEdSettings.numChildren();
 for (int i = 0; i < numKids; i++)
 {
 XMLObject kid = customEdSettings.getChild(i);
 if (kid.getTag().equals("Slabel"))
 {
 int location = kid.getInt("location");
 String lab = kid.getAttribute("string");
 labelTable.put(new Integer(location), new JLabel(lab));
 }
 }

 slider_.setLabelTable(labelTable);
 slider_.setPaintLabels(true);

 /*
 Set up the other information to display the slider. This is
 for the JPanel in which the slider resides. Note that EditorBase,
 which SliderEditor extends, is an extension of JPanel.
 */
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
 setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));

 /*
 Set the background color to be consistent with the color set
 in "Configure Maui" appearance settings.
 */
 //setBackground(EditorSettings.getBackgroundColor());
 setBackground(this.getEditorSettings().getBackgroundColor());

 /*
 Get the label and the tool tip for the Integer and add
 them to this JPanel. Set the font and background color.
 */
 String name = intInstance_.getLabel();
 //String tip = intInstance_.getTip();
 String tip = intInstance_.getAttribute("tooltip");
 label_ = new JLabel(" " + name + ": ");
 label_.setToolTipText(tip);

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (6 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

 label_.setBackground(this.getEditorSettings().getBackgroundColor());
 label_.setFont(this.getEditorSettings().getFont());

 /* If this is a required parameter, label it in blue. */
 //if(intInstance_.myVar_.optional_.compareTo("false")==0)
 if (intInstance_.myVar_.getAttribute("optional").equals("false"))
 label_.setForeground(Color.blue);

 /* Call the setEditable method in EditorBase to allow the user to edit
 this object (i.e. change the integer value by using the slider bar
 */
 //setEditable(intInstance_.isEditable());
 setEditable(intInstance_.getAttribute("editable").equals("true"));

 /* Add the label and slider to this JPanel (i.e. SliderEditor/EditorBase). */
 add(label_);
 add(slider_);
 add(Box.createHorizontalGlue());
 }

 //---
 /**
 Sets the value given by the slider. This version simply calls
 the the two parameter setValue method; the second parameter is
 set to true, which means that setValue will check for errors when
 the value is set.

 @param failureList a Vector holding any errors created.
 */
 public void setValue(Vector failureList)
 {
 setValue(failureList, true);
 }

 //---
 /**
 Sets the value given by the slider. Since there is no way to
 enter an illegal value, the boolean argument checkForErrors has
 no effect.

 @param failureList a Vector holding any errors created.
 @param checkForErrors a flag to signify if errors should be reported
 using the failureList, or not.
 */
 public void setValue(Vector failureList, boolean checkForErrors)
 {
 int value = slider_.getValue();
 /* No error can occur since max and min are set by the slider. So

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (7 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

 we call the setValue method for the instance with the value of
 the second parameter being false. */
 intInstance_.setValue(new Integer(value).toString(), false);
 }

 //---
 /**
 Updates the value of the slider from the supplied XMLObject.
 Here, the value could, in theory, be invalid, so we check. If
 it is invalid, we set it to the default value. Other remedies
 could be considered.

 @param xml the XMLObject containing the value for the slider.
 @param failureList a Vector to contain all of the errors.
 @param checkValue a boolean to indicate if a legitimate value
 is provided.
 */
 public void updateValue(XMLObject xml, Vector failureList,
 boolean checkValue)
 {
 /* Get the value from the XMLObject. Use the default value if
 none is provided. */
 String sVal = xml.getWithDefault("default",
 //intInstance_.getDefaultValue());
 intInstance_.getAttribute("default"));
 int val = new Integer(sVal).intValue();

 if (checkValue)
 {
 if (val <min_ || val > max_)
 {
 //val = new Integer(intInstance_.getDefaultValue()).intValue();
 val = new Integer(intInstance_.getAttribute("default")).intValue();
 }
 }
 slider_.setValue(val);
 setValue(failureList, checkValue);
 }

 //---
 /**
 Stores the value so that it can later be restored by the
 restoreValue method.
 */
 public void storeValue()
 {
 savedValue_ = slider_.getValue();
 savedLabel_ = label_.getText();

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (8 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

 isSaved_ = true;
 }

 //---
 /**
 Restores a stored value from storeValue.
 */
 public void restoreSavedValue()
 {
 if (!isSaved_) return;
 slider_.setValue(savedValue_);
 label_.setText(savedLabel_);
 setValue(new Vector(),false);
 }

 //---
 /**
 Updates the look and feel of the panel based on new values in
 EditorSettings.
 */
 public void refreshLookAndFeel()
 {
 /* set font */
 label_.setFont(getEditorSettings().getFont());

 /* set background */
 setBackground(getEditorSettings().getBackgroundColor());
 label_.setBackground(getEditorSettings().getBackgroundColor());

 /* refresh the panel */
 label_.invalidate();
 slider_.invalidate();
 validate();
 }
}

Figure 4.4.1 SliderEditor.java

There are many other details that could be addressed concerning the writing of a custom editor. Instead of devoting
more text to these details, we suggest that you browse the various editor classes contained in
$MAUI_HOME/Java/src/Maui/Editors. You will quickly see that many of the methods that must be
overridden from EditorBase have very similar implementations from Editor class to Editor class.

Next: 4.3.4 Compiling Your Custom Up: 4.3 Writing Your Own Previous: 4.3.2 Steps to Writing

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (9 of 10) [8/8/2003 4:02:47 PM]

4.3.3 Example of a Maui Custom Editor

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node40.html (10 of 10) [8/8/2003 4:02:47 PM]

4.3.4 Compiling Your Custom Editor

Next: 4.3.5 Configuring Maui to Up: 4.3 Writing Your Own Previous: 4.3.3 Example of a

4.3.4 Compiling Your Custom Editor

To compile your custom editor, first make sure that you are in the directory where
SliderEditor.java is located ($MAUI_HOME/Doc/tutorials/maui/Java). Now type the
command

 UNIX:
 javac -classpath .:$MAUI_HOME/Java/classes/maui.jar:\
 $MAUI_HOME/Java/classes/xerces.jar SliderEditor.java
 WINDOWS:
 javac -classpath .;"%MAUI_HOME%\Java\classes\maui.jar";
 "%MAUI_HOME%\Java\classes\xerces.jar"
 "%MAUI_HOME%\Doc\tutorials\maui\Java\SliderEditor.java"

(NOTE: Because the command is too long to fit on one line, it has been separated it into multiple lines to
make the command easier to read. However, for Windows to execute this command, the entire command
must be typed on one line.)

Next: 4.3.5 Configuring Maui to Up: 4.3 Writing Your Own Previous: 4.3.3 Example of a

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node41.html [8/8/2003 4:02:47 PM]

4.3.5 Configuring Maui to Find Your Custom Editor

Next: 4.4 Summary Up: 4.3 Writing Your Own Previous: 4.3.4 Compiling Your Custom

4.3.5 Configuring Maui to Find Your Custom Editor

As mentioned previously, you may specify the path to your custom editor within the XML name
attribute of the CustomEditor XML element, you may use the ``Configure Maui'' button to set up the
path to the custom editor, or you may let Maui try to figure out the path. Details of configuring Maui to
find the compiled custom editor class file can be found in Chapter 5, Section 5.4.

Next: 4.4 Summary Up: 4.3 Writing Your Own Previous: 4.3.4 Compiling Your Custom

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node42.html [8/8/2003 4:02:47 PM]

4.4 Summary

Next: 5. Configuring Maui Up: 4. Custom Editors Previous: 4.3.5 Configuring Maui to

4.4 Summary
In this chapter you have learned the fundamentals of writing a custom editor for any of the Maui data
types. Custom editors are an advanced feature in Maui, so we encourage you to take time to study the
editor classes built into Maui (in $MAUI_HOME/Java/src/Maui/Editors) to see how other
editors are implemented.

Next: 5. Configuring Maui Up: 4. Custom Editors Previous: 4.3.5 Configuring Maui to

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node43.html [8/8/2003 4:02:47 PM]

5. Configuring Maui

Next: 5.1 Introduction Up: A Maui User's Guide Previous: 4.4 Summary

5. Configuring Maui

Subsections

● 5.1 Introduction
● 5.2 Appearance Settings
● 5.3 Services
● 5.4 Paths and Packages

❍ 5.4.1 Configuring with the Configure Maui Button
❍ 5.4.2 The ``Do Nothing'' Configuration Method
❍ 5.4.3 Configuring in Your XML Specification

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node44.html [8/8/2003 4:02:47 PM]

5.1 Introduction

Next: 5.2 Appearance Settings Up: 5. Configuring Maui Previous: 5. Configuring Maui

5.1 Introduction
Maui may be dynamically configured in several ways. For example, font size and background color can
be changed and these choices can be made permanent. In addition, Maui can be told where to find
custom actions and editors, or what input files to use. These Maui configuration actions are all described
in this chapter. All of these actions are started by clicking on the ``Configure Maui'' button in the main
tool bar. This brings up a window as in Figure 5.1.

Figure 5.1: The ``Configure Maui'' Panel

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node45.html (1 of 2) [8/8/2003 4:02:48 PM]

5.1 Introduction

Next: 5.2 Appearance Settings Up: 5. Configuring Maui Previous: 5. Configuring Maui

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node45.html (2 of 2) [8/8/2003 4:02:48 PM]

5.2 Appearance Settings

Next: 5.3 Services Up: 5. Configuring Maui Previous: 5.1 Introduction

5.2 Appearance Settings
Within the ``Configure Maui'' GUI window, clicking on the ``Appearance Settings'' tab shows you where
you can change the desktop size, the desktop location, the frame size, the font size, and the background
color. The desktop size is the initial size of the original screen that comes up when you first start Maui.
The desktop location is determined by (x,y) coordinates that signify the location of the top left corner of
the desktop; (0,0) locates the desktop in the top left corner of the screen. The frame size is the original
size of the screen that comes up when you click on ``Start New Session.'' These sizes and location
coordiantes are in pixels.

Change any of these settings to suit your preferences and then click on ``Apply Settings'' to see how your
settings will affect the look of Maui. When you are happy, click on ``Save Config'' to make these
changes permanent. If you want to start over, you can always click on ``Reset to Defaults'' and the
original default settings will be restored.

An important question arises: Where are these settings stored? Any changes made to the ``Configure
Maui'' panel are saved to a file named config-local.xml that is in a directory that depends on your
operating system. If you are running any version of Unix, this file is stored in the .mauiConfig
directory in your home directory. For Windows, and any other operating system, the file is stored in the
folder mauiConfig in the directory that Java returns from the statement

String dir = System.getProperty("user.home");

Recall that this folder (directory) was created when Maui was installed. The advantage of doing things
this way is that if you ever update your version of Maui, your personal settings will remain valid. Do not
modify the files in the .mauiConfig/mauiConfig directory by hand. The files are produced (and
overwritten) automatically by Maui.

We plan to provide more appearance settings in the future, but let us know if you have some particular
need now.

Next: 5.3 Services Up: 5. Configuring Maui Previous: 5.1 Introduction

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node46.html [8/8/2003 4:02:48 PM]

5.3 Services

Next: 5.4 Paths and Packages Up: 5. Configuring Maui Previous: 5.2 Appearance Settings

5.3 Services
In Section 2.2 we mentioned the RootClass attribute belonging to the Maui element that begins each
XML file. The RootClass specification tells Maui which class to display in the main panel of the Maui
GUI. Maui can load multiple Maui XML files that each have their own RootClass specified. Maui
will generate a subclass selection menu from which a user can select the service of interest.

Let us assume the following XML specifies your service (that is, interface to your application):

<Maui RootClass="Parameters">

 <Class type="Parameters" label="Set the Parameters">
 <Fields>
 <Int name="maxit" label="Maximum number of iterations"
 default="50"/>
 <Double name="tol" label="Convergence Tolerance"
 default="1.0e-06"/>
 </Fields>
 </Class>

</Maui>

Suppose that the above Maui XML was saved in the file /home/fred/myApp/params.xml. By
clicking on the ``Services to Add'' tab, you get the screen similar to the one in Figure 5.2. Click on ``add''
to get the screen shown in Figure 5.3. In the text area labeled service you can type in
/home/fred/myApp/params.xml. Alternatively you can click on the ``browse'' button and
navigate to the params.xml file with the file browser. The label box is there for convenience -- it
allows you to associate a nickname for the service rather than use the path name. So, for example, you
could enter params in this box. Be sure that the ``To be included'' box is checked, and click ``ok''. The
``To be included'' box is here to allow you to pick and choose what services you want to come up when
you start a session. In particular, you can stop a service from coming up by unchecking its ``To be
included'' box. You do not have to remove the service from the array and then later retype the service
information if you decide you want the service reinstated in the GUI.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node47.html (1 of 2) [8/8/2003 4:02:49 PM]

5.3 Services

Figure 5.2: The ``Services to Add'' Panel.

Important: click on ``Save Config'' to have this information written to your .mauiConfig or
mauiConfig directory.

Next: 5.4 Paths and Packages Up: 5. Configuring Maui Previous: 5.2 Appearance Settings

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node47.html (2 of 2) [8/8/2003 4:02:49 PM]

5.4 Paths and Packages

Next: 5.4.1 Configuring with the Up: 5. Configuring Maui Previous: 5.3 Services

5.4 Paths and Packages
As mentioned in Chapter 3 on Maui Actions, and Chapter 4 on Maui CustomEditors, path and
package information must be provided to Maui for locating custom classes. The following sections
address the three different ways that one can specify path and package information for custom actions
and custom editors.

Subsections

● 5.4.1 Configuring with the Configure Maui Button
● 5.4.2 The ``Do Nothing'' Configuration Method
● 5.4.3 Configuring in Your XML Specification

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node48.html [8/8/2003 4:02:49 PM]

5.4.1 Configuring with the Configure Maui Button

Next: 5.4.2 The ``Do Nothing'' Up: 5.4 Paths and Packages Previous: 5.4 Paths and Packages

5.4.1 Configuring with the Configure Maui Button

Using the ``Configure Maui'' button in the Maui desktop is sometimes the convenient way to set
classpath and package information for your custom classes. Clicking on ``Package Names'' and
``Classpath entries'' brings up an array to which you can add your package and classpath
information, respectively. This information is used to load custom action and editor classes that are not
built into Maui. Again, be sure to click on ``Save Config'' to ensure that this information is available for
Maui to use.

Getting the path and package information correct can sometimes be confusing, so if you get it wrong,
Maui will fail to load your custom action or custom editor. However, Maui will then give you a chance to
point to the appropriate class using a file browser. When the path to your class is correctly specified,
Maui will automatically determine the correct path and package information and write this into your
config-local.xml.

Next: 5.4.2 The ``Do Nothing'' Up: 5.4 Paths and Packages Previous: 5.4 Paths and Packages

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node49.html [8/8/2003 4:02:49 PM]

5.4.2 The ``Do Nothing'' Configuration Method

Next: 5.4.3 Configuring in Your Up: 5.4 Paths and Packages Previous: 5.4.1 Configuring with the

5.4.2 The ``Do Nothing'' Configuration Method

Using the ``Configure Maui'' button is not the only way to tell Maui where your custom classes are
located. Probably the easiest way to configure the necessary paths is to just wait to be prompted by Maui
that it needs path information. So don't do anything to specify the path and package for a class. When
you start a Maui session, Maui will at first fail to find your Action or CustomEditor, but you will
be given the opportunity to search for it. If you choose to search for the class, a file browser will be
displayed and you can browse for your class file. When you find the class file and select it, Maui will try
to load it. Of course, if you made some mistakes in writing your action or custom editor, e.g., didn't make
it a public class or forgot to extend MauiAction or EditorBase, Maui will try to tell you what the
error is. In any case, the loading will fail and the session will be ended. If Maui succeeds in loading the
class, Maui will modify your config-local.xml, so you will never have to search for this class
again.

Next: 5.4.3 Configuring in Your Up: 5.4 Paths and Packages Previous: 5.4.1 Configuring with the

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node50.html [8/8/2003 4:02:49 PM]

5.4.3 Configuring in Your XML Specification

Next: A. Application Example Up: 5.4 Paths and Packages Previous: 5.4.2 The ``Do Nothing''

5.4.3 Configuring in Your XML Specification

The least optimal way to specify the classpath and package information is in the XML input file. In
the case where your application is going to be run on multiple platforms, you cannot guarantee that the
installation location of your custom classes will be the same on each platform. So you would have to
modify the XML specification of the path and package for a custom class on every platform. In the case
where your application may be installed multiple places, you are better off to use the ``Configure Maui''
button, or the ``do nothing'' method to configure your paths.

If you still wish to enter the path and package attributes in your XML, you may. To specify the path
and package information for the TestAction class we wrote in Chapter 3, we could enter

<Action class="TestAction"
path="path to directory TestAction.class lives"/>

or, if TestAction is in a package,

<Action class="TestAction"
path="path to package in which TestAction.class lives"
package="packageName"/>

where path to package in which TestAction.class lives is the directory--not including the package directory-
-above where TestAction.class is located, and packageName is the name of the package--the
directory name that corresponds with the package. For example, assume TestAction.class is in a
package called Test, and lives in the directory /home/fred/Projects/Test/. Then the path
attribute above would be set to /home/fred/Projects, while the package attribute would be set to
Test.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node51.html (1 of 2) [8/8/2003 4:02:50 PM]

5.4.3 Configuring in Your XML Specification

Figure 5.3: The ``Adding a Service'' Panel.

Next: A. Application Example Up: 5.4 Paths and Packages Previous: 5.4.2 The ``Do Nothing''

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node51.html (2 of 2) [8/8/2003 4:02:50 PM]

A. Application Example

Next: A.1 A Calore GUI Up: A Maui User's Guide Previous: 5.4.3 Configuring in Your

A. Application Example

Subsections

● A.1 A Calore GUI
❍ A.1.1 Differences Between Text and GUI Calore Input
❍ A.1.2 Calore GUI Design Examples

■ A.1.2.1 Array Example
■ A.1.2.2 Optional Fields Example
■ A.1.2.3 Subclassing Example
■ A.1.2.4 Referencing Example
■ A.1.2.5 Import Example
■ A.1.2.6 String Menu Example

● A.2 Text Input to Calore

Next: A.1 A Calore GUI Up: A Maui User's Guide Previous: 5.4.3 Configuring in Your

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node52.html [8/8/2003 4:02:50 PM]

A.1 A Calore GUI

Next: A.1.1 Differences Between Text Up: A. Application Example Previous: A. Application Example

A.1 A Calore GUI
Several existing code projects at Sandia are using Maui for a graphical user interface to their codes.
Codes currently using Maui have been written in C, C++, and Fortran 77. For each project using Maui,
the graphical user interface to the code makes it easier to enter inputs to the code in an organized manner.
In this section we discuss the Maui interface to a code called Calore to provide examples of how to write
Maui XML for a particular problem.

Calore is a code developed at Sandia National Laboratories to carry out thermal analysis. Calore's
principal capabilities are linear and non-linear heat conduction, enclosure radiation, and high explosive
and foam decomposition chemistry (http://www-irn.sandia.gov/organization/sbu/sbu-
nw/nwsbu-home/capabilities/engineering.htm).

Calore is one code among many that fits into a finite element code framework called Sierra. Through the
Sierra framework, an analyst may run many types of finite element simulations. Because of the common
look-and-feel that Maui offers a user, it is an ideal tool for generating GUIs for all the Sierra codes.

Before the Maui GUI was introduced for the Calore project, the Calore user entered input information for
Calore as ASCII text in an input file. Data within the file was broken up into ``blocks,'' that can easily be
likened to data objects in the object oriented programming paradigm. Because Maui is also object
oriented, translation of the ASCII text input required by Calore into the XML GUI description required
by Maui was straightforward.

A ``block'' of data in the ASCII Calore input file is delimited by a begin and an end statement. In
many cases, multiple blocks of a similar type might be entered by the Calore user, such as function
specifications, boundary conditions, and property specifications for various materials. To distinguish
between blocks that may appear more than one in the input file, the Calore user assigns a unique block
name to each block. In Section A.2, you can see the variety of block types and block names that may be
used in a Calore ASCII text input file.

Subsections

● A.1.1 Differences Between Text and GUI Calore Input

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node53.html (1 of 2) [8/8/2003 4:02:50 PM]

A.1 A Calore GUI

● A.1.2 Calore GUI Design Examples
❍ A.1.2.1 Array Example
❍ A.1.2.2 Optional Fields Example
❍ A.1.2.3 Subclassing Example
❍ A.1.2.4 Referencing Example
❍ A.1.2.5 Import Example
❍ A.1.2.6 String Menu Example

Next: A.1.1 Differences Between Text Up: A. Application Example Previous: A. Application Example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node53.html (2 of 2) [8/8/2003 4:02:50 PM]

A.1.1 Differences Between Text and GUI Calore Input

Next: A.1.2 Calore GUI Design Up: A.1 A Calore GUI Previous: A.1 A Calore GUI

A.1.1 Differences Between Text and GUI Calore
Input

When writing a Calore text input file, the user does not have to enter data blocks in any particular order.
However, nested data (blocks within blocks) must be nested appropriately. For example, a user may
specify material properties before functions, even if one of the material properties references a function
defined later in the file. For the Maui GUI, there are some restrictions to the order in which a user must
input information. In the materials/functions example, the user cannot specify a function to define a
material property unless the function has already been defined.

The Calore input vocabulary is quite extensive, and the user has many ways to enter data to set up a
problem. With the GUI, the user is able to see all possible options without requiring a supplementary
user's manual. Additionally, color coding of the entry box labels tells the user if a field is required to
contain data (blue label), or if it is optional (black label). Mutually exclusive options, such as selecting
one solver out of all available solvers, is represented in the GUI by a selection button. If the user selects
one particular solver, then options for that solver only appear on the screen, while options only pertinent
to other solvers are hidden from the user's view.

In the Calore text input file, if a user wishes to refer to something like a material, the user is required to
type in the name of the material in the block of input requiring the reference. Lines 23-27 the Calore
input listing in Section A.2 define the material Copper. In line 71 of the Calore input example, Copper
is referenced within a finite element block.

In the GUI, references may be set up so that as a user adds materials in the interface, any input that
references a material gets an updated drop-down list of material names from which the user can select.

Next: A.1.2 Calore GUI Design Up: A.1 A Calore GUI Previous: A.1 A Calore GUI

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node54.html [8/8/2003 4:02:50 PM]

A.1.2 Calore GUI Design Examples

Next: A.2 Text Input to Up: A.1 A Calore GUI Previous: A.1.1 Differences Between Text

Subsections

● A.1.2.1 Array Example
● A.1.2.2 Optional Fields Example
● A.1.2.3 Subclassing Example
● A.1.2.4 Referencing Example
● A.1.2.5 Import Example
● A.1.2.6 String Menu Example

A.1.2 Calore GUI Design Examples

In this section we will use the XML specification of the Calore/Maui GUI to illustrate many Maui capabilities. Through
the examples in this section you will be given motivation for when to use Maui objects and capabilities such as arrays,
optional field settings, subclassing, references, importing XML files, and string menus.

A.1.2.1 Array Example

In the Calore text input file, there are many places where a Calore user might define several blocks of the same type, such
as functions, solvers, and Calore regions. In the Maui GUI, blocks that might appear zero or more times can be
represented as elements in an array. In Figure A.1, we show the XML for representing a function definition object,
FuncDef, as the template for an array element in a Maui Array. For the XML that specifies the classes derived from
FuncDef, see $MAUI_HOME/Doc/tutorials/maui/XML/calore.xml. This XML is translated into the GUI
object in Figure A.2.

<Class type="FuncArrClass" label="Define Functions">
 <Fields>
 <Array name="funcArr" label="Define Functions">
 <Master label="$funcName">
 <FuncDef name="aFuncDef" label="Blah"/>
 </Master>
 </Array>
 </Fields>
</Class>

<Class type="FuncDef" label="Define a funciton">
 <Fields>
 <String name="funcName" label="Function Name" />
 <FunctionType name="funcType" label="Type of Function"/>
 </Fields>
</Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (1 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

<Class type="FunctionType" label="Type of Function (default: Piecewise Linear)">
</Class>

Figure A.1: XML example of generating an Array.

Figure A.2: Maui GUI generated by the input shown in Figure A.1

A.1.2.2 Optional Fields Example

Within each Calore/Maui class specified in the XML, many of the data fields are optional input to Calore. Integer,
Double, String, and Reference objects may be flagged as optional by using the optional="true" attribute for
these XML data types. If no optional attribute is set in the XML, then by default the parameter is assumed to be
required.

In the GUI, required fields are designated by making the field label bright blue. Labels of optional fields are in the
standard gray type. See Figure A.3. If a user tries to submit their data by using the ``Submit'' button, or presses ``OK''
inside an array element editor, a error message will appear if required fields have not been filled in. Additionally, the
action (submitting the data or exiting the array editor) will not be carried out until all the required fields have been filled
in.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (2 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

Figure A.3: Maui GUI demonstrating optional and required fields.

The class to represent a bulk fluid element in Figure A.4 shows how some fields may be set to optional, while others are
required. Both the bfeName string and the bfeMaterialRef are required. For bfeName, optional="false"
has been specified; for bfeMaterialRef, the reference is required by default because of the omission of the
optional attribute. The two double fields, bfeVol and bfeInitTemp are both optional since optional="true"
has been specified.

<Class label="Bulk Fluid Element" type="BulkFluidElement">
 <Fields>
 <String name="bfeName" label="Bulk Fluid Element Name" optional="false"/>
 <Double name="bfeVol" label="Volume" optional="true"/>
 <Double name="bfeInitTemp" label="Initial Temperature" optional="true"/>
 <Reference select="true" output="reference" name="bfeMaterialRef"
 label="Material" path="root/calMain/matArrObj/materialArr"/>
 </Fields>
</Class>

Figure A.4: XML example of using optional and required attributes.

A.1.2.3 Subclassing Example

Subclassing within the Calore XML is done in two circumstances. First, when a choice of one particular object from a set
of similar objects is warranted, subclassing is used. Second, when we wish the user to make a choice between specifying
several data fields for a data object, or not using that object at all, we can use subclassing.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (3 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

Calore solvers are an example of subclass usage to represent different derivations of a similar base object. There are many
different solvers available in Calore, and the user must choose only one of them. See Figure A.5 for the GUI component
that represents the selection among solvers. Shown in Figure A.6 is the XML for representing two of the solvers, and the
base class from which they are derived. Figure A.7 shows the interface when the Aztec solver has been selected. All of
the solvers contain a solver block name, as well as fields for setting up debugging. These fields are contained as members
of the Solver base class. Further, several of the solvers had several data fields in common, so each of these solvers
contain a class instance of the SolverShared class. Finally, the unique fields that are specific to a particular solver are
contained in the particular solver class (i.e. Aztec, Hypre, ISIS, etc.). See
$MAUI_HOME/Doc/tutorials/maui/XML/caloreSolvers.xml for the full XML for all the solvers used in
the Calore/Maui interface.

Figure A.5: Maui GUI example of solver subclass selection.

<Class type="Solver" label="Solver (default: Spooles)">
 <Fields>
 <String name="solverName" label="Solver Name"/>
 <Int name="debugOutLevel" label="Debugging Output Level" optional="true"/>
 <String name="debugOutFile" label="Debugging Output File Path"
 optional="true"/>
 </Fields>
</Class>

<Class type="SolverShared" label="">
 <Fields>
 <String name="solutionMethod" label="Solution Method">

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (4 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

 <Menu options="CG|CGS|BICGSTAB|GMRES|DEFGMRES|FGMRES|QMR|LU|BCGS"/>
 </String>
 <String name="precondMethod" label="Preconditioner Method">
 <Menu options="None|Jacobi|Block-Jacobi|Neumann|Least-Squares|DD-LU"/>
 </String>
 <Int name="maxIters" label="Maximum Solution Method Iterations"
 default="1" lower="1"/>
 <Double name="maxTol"
 label="Iterative Solution Method Residual Norm Tolerence"
 default="0.1" lower="0.0"/>
 <String name="residNormScal" label="Residual Norm Scaling">
 <Menu options="None|RHS|R0|URHS|ANORM"/>
 </String>
 <Int name="restartCt"
 label="Iterative Solution Method Restart Iteration Count"
 optional="true"/>
 <Int name="polyOrder" label="Polynomial Order of Preconditioning Method"
 optional="true"/>
 </Fields>
</Class>

<!-- SpoolesSolver class -->
<Class type="SpoolesSolver" label="Spooles Solver" base="Solver">
 <Fields>
 <String name="matRedux" label="Matrix Reduction">
 <Menu options="None|Hypre-Schur|Hypre-Slide|FEI-Remove-Slaves"/>
 </String>
 <String name="matViewMachine" label="Host Running Matrix Viewer"
 optional="true"/>
 <Integer name="matViewPort" label="Host Port to Matrix Viewer"
 optional="true"/>
 </Fields>
</Class>

<!-- AztecSolver class -->
<Class type="AztecSolver" label="Aztec Solver" base="Solver">
 <Fields>
 <SolverShared name="azSolvShare1" label=""/>
 <String name="matRedux" label="Matrix Reduction">
 <Menu options="None|Hypre-Schur|Hypre-Slide|FEI-Remove-Slaves"/>
 </String>
 <Int name="azPrecondSteps"
 label="Number of Preconditioning Methods' Applications/Iteration"
 optional="true"/>
 <Int name="iluFill" label="Fill-in Parameter for Incomplete Factorizations"
 optional="true" />
 <Double name="iluThresh"
 label="Threshold parameter for Incomplete Factorizations"
 optional="true"/>
 <Integer name="multLevels"

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (5 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

 label="# Levels for Multi-Level/MultiGrid Solvers"
 optional="true"/>
 <String name="matViewMachine" label="Host Running Matrix Viewer"
 optional="true"/>
 <Integer name="matViewPort" label="Host Port to Matrix Viewer"
 optional="true"/>
 </Fields>
</Class>

Figure A.6: XML example of defining subclasses.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (6 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

Figure A.7: Maui GUI representation of the Aztec solver.

Using subclassing to allow or disallow setup of a set of parameters is demonstrated in the Viewfactor solver. As we have
seen above, single parameters can be made optional by setting the XML attribute to optional="true". However, for
large blocks of data that pertain to a particular type of settings, keeping these optional parameters out of sight unless the
user desires to use them gives a cleaner look in the GUI. Shown in Figure A.8, the XML for representing the option of not
displaying or displaying the data fields for the Viewfactor solver are shown. Figures A.9 and A.10 show the GUI
representation of this type of subclassing choice.

<Class type="ViewfactorSolverBase"
 label="Viewfactor Solver Parameters (default: none)"/>

<Class type="ViewfactorSolverNO"
 label="No Viewfactor Solver Parameter Specifications"
 base="ViewfactorSolverBase"/>

<Class type="ViewfactorSolverYES" label="Set Viewfactor Solver Parameters"
 base="ViewfactorSolverBase">
 <Fields>
 <ViewFactorOutFile name="vfOutFile"
 label="Viewfactor Output File Settings"/>
 <String name="vfInfile" label="Viewfactor Input File Name"
 optional="true"/>
 <Boolean name="vfStagedIO" label="Use Staged I/O" default="false"/>
 <Int name="vfNumControllers" label="Number of Controllers"
 optional="true"/>
 <String name="vfCoupRule" label="Coupling Rule">
 <Menu options="Lagged|Mason"/>
 </String>
 <String name="vfSolMethod" label="Solution Method">
 <Menu options="Chaparral Gauss|Chaparral GMRES|Chaparral CG"/>
 </String>
 <String name="vfSolOutRule" label="Solution Output Rule">
 <Menu options="None|Summary|Verbose"/>
 </String>
 <Double name="vfConvTol" label="Convergence Tolerance" optional="true"/>
 <Int name="vfMaxIters" label="Maximum Number of Iterations" default="1"/>
 <Double name="vfRelaxFactor" label="Relaxation Factor"
 optional="true" />
 </Fields>
</Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (7 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

Figure A.8: XML using subclassing to provide a yes/no subsection of data selection.

Figure A.9: Maui GUI example of subclassing to provide a yes/no subsection of data selection.

Figure A.10: Maui GUI example of subclassing to provide a yes/no subclass selection, with the ``yes'' option (``Set

Viewfactor Solver Parameters'') selected.

A.1.2.4 Referencing Example

References are an important part of the Calore/Maui GUI. The user specifies functions, materials, and solvers, and then

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (8 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

may want to refer to these objects in other parts of the interface. For example, the user may define a variety of functions,
then use one or more of these functions to specify material properties for a material (Figures A.2 and A.11). Likewise, a
finite element model depends on blocks of materials that may be referred to after the materials have been set up.
Figure A.12 shows the XML for specifying the reference to a material contained in a finite element object.

Figure A.11: Maui GUI example using referencing

<Class type="FEBlock" label="Finite Element Block Specifications" >
 <Fields>
 <String name="blockName" label="Finite Element Block Name" optional="false"/>
 <Reference name="matRef" label="Material"
 path="root/calMain/matArrObj/materialArr"
 select="true" output="reference"/>
 </Fields>
</Class>

Figure A.12: XML example of specifying a reference to an array.

The path for a reference can be specified one of two ways: tracing the path to the reference from the root of the class
hierarchy in the input file, or by providing a relative the path to the reference from the current class. See Section 2.8 for
more details on creating References.

Figure A.12 shows specification from the root. The root label in a reference says to go to the top level object that
contains all other objects in this interface. In the Calore example, the root object is Calore See
$MAUI_HOME/Doc/tutorials/maui/XML/calore.xml for more examples of reference usage.

A.1.2.5 Import Example

One writing an XML interface file for Maui can break the different classes that are a part of a user interface into smaller

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (9 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

files for better readability. To include these classes as part of the main XML specification for the GUI, import
statements may be used to insert the imported XML into the main XML file. The main XML file is the one that specifies
the root class with the beginning element, <Maui rootClass="root class name">. In the Calore example the main
Calore file is the one containing the beginning element <Maui rootClass="Calore">.

In the main Calore XML input file, there is an import statement for bringing in the XML specification for all the
solvers. The XML from the imported file is essentially inserted in the main Maui file at the point which the import
statement is entered. It is imperative to make sure that class nesting is done appropriately for this reason. You would not
want to bring in fully defined classes using import in the middle of another class, but between other class specifications
in the XML.

Figure A.13 shows the import specification for the caloreSolver.xml file.

 <Class label="Define Solvers" type="SolverArrClass">
 <Fields>
 <Array name="solverArr" label="Define Solvers">
 <Master>
 <Solver name="solver" label="Solver"/>
 </Master>
 </Array>
 </Fields>
 </Class>

Figure A.13: Example of using an import statement in the XML to include XML contained in another file.

A.1.2.6 String Menu Example

String menus are useful when the user has only a fixed number of choices for a string to enter into the editor. Rather than
having the user remember which strings are legal, a list of possible selections can be generated with a string menu.

In Figure A.14 we see both a text box string and menu string specification. The variable vfOutfile will be represented
with a string text box where the user can input the name of the file. The variable vfOutFormat will have a drop down
menu with three file type selection options, ASCII, Binary, or XDR. See Figure A.15 for the GUI rendering of this
class.

 <Class label="Viewfactor Output File Settings" type="ViewFactorOutFile"
collapsible="false">
 <Fields>
 <String name="vfOutfile" label="Output File Name"/>
 <String name="vfOutFormat" label="File Format">
 <Menu options="ASCII|Binary|XDR"/>
 </String>
 </Fields>
 </Class>

Figure A.14: XML example of how a StringMenu is defined.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (10 of 11) [8/8/2003 4:02:51 PM]

A.1.2 Calore GUI Design Examples

Figure A.15: Maui GUI example of rendering of string text box and string menu

Next: A.2 Text Input to Up: A.1 A Calore GUI Previous: A.1.1 Differences Between Text

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node55.html (11 of 11) [8/8/2003 4:02:51 PM]

A.2 Text Input to Calore

Next: B. Maui XML syntax Up: A. Application Example Previous: A.1.2 Calore GUI Design

A.2 Text Input to Calore
The following section contains an example Calore text input file. This file is an example of how a Calore
user typically would typically specify input to Calore.

 1 Begin sierra Calore
 2
 3 title radar chip temperatures - tighten int/conv tol
 4
 5 Begin Time Control
 6 Begin Time Stepping Block ts1
 7 start time = 0.0
 8 Begin Parameters for Calore Region myRegion
 9 time step = 0.01
 10 transient step type=automatic
 11 time integration rule=implicit
 12 predictor rule=forward euler
 13 ABSOLUTE SOLN LIMIT = 1.0E20
 14 MAX TIME STEP = 10.0
 15 MIN TIME STEP = 0.0001
 16 MAX TIME TRUNC ERROR = 1.0e-3
 17 mass matrix = lumped
 18 End
 19 End Time Stepping Block ts1
 20 Termination time=0.13
 21 End Time Control
 22
 23 Begin Property Specification for Material Copper
 24 Density =8900.
 25 Specific Heat =385.
 26 Thermal Conductivity =300.
 27 End
 28 Begin Property Specification for Material Duroid3010
 29 Density =3000.
 30 specific Heat =930.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node56.html (1 of 4) [8/8/2003 4:02:52 PM]

A.2 Text Input to Calore

 31 Thermal Conductivity =0.44
 32 End
 33 Begin Property Specification for Material ChipBody #GaS
 34 Density =5320.
 35 Specific Heat =333.
 36 Thermal Conductivity =44.
 37 End
 38
 39 Begin Definition for Function fluxfunc1
 40 type is piecewise linear
 41 begin values
 42 0. 0.0
 43 1. 8.38e6
 44 10000. 8.38e6
 45 end values
 46 end
 47 Begin Definition for Function emm2
 48 type is constant
 49 begin values
 50 0.5
 51 end values
 52 end
 53 Begin Definition for Function emm3
 54 type is constant
 55 begin values
 56 0.3
 57 end values
 58 end
 59
 60 Begin Global Constants
 61 Stefan Boltzmann constant= 5.67e-8
 62 end
 63
 64 Begin Finite Element Model bar
 65 database name = radar.par
 66
 67 Begin parameters for block block_1
 68 material ChipBody
 69 End
 70 Begin parameters for block block_2
 71 material Copper
 72 End
 73 Begin parameters for block block_3

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node56.html (2 of 4) [8/8/2003 4:02:52 PM]

A.2 Text Input to Calore

 74 material Duroid3010
 75 End
 76
 77 End Finite Element Model bar
 78
 79
 80 Begin aztec equation solver solve_temperature
 81 solution method = cg
 82 preconditioning method = dd-icc
 83 maximum iterations = 10000
 84 residual norm tolerance = 1.0e-5
 85 residual norm scaling = none
 86 Matrix Reduction = fei-remove-slaves
 87 End
 88
 89 Begin Calore procedure myProcedure
 90
 91 Begin Calore region myRegion
 92
 93 use finite element model bar
 94 use linear solver solve_temperature
 95
 96 Begin Constant Initial Condition Block ic1
 97 temperature = 313.15
 98 all volumes
 99 End
100
101 Begin Results Output Label diffusion output
102 database name = radar.e
103 at time 0., increment = 10.
104 Title Radar Chip Temperatures
105 Nodal Variables = temperature as Temperature
106 End
107
108 Begin Constant Essential Boundary Condition on surface_7
109 temperature=313.15
110 End
111
112
113 Begin Unsteady Heat Flux Boundary Condition Abdul
114 add surface surface_10
115 flux function = fluxfunc1
116 end

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node56.html (3 of 4) [8/8/2003 4:02:52 PM]

A.2 Text Input to Calore

117
118 Begin Contact Definition mpc1
119 contact surface surf1 contains surface_1
120 contact surface surf2 contains surface_2
121 contact surface surf3 contains surface_3
122
123 begin interaction inter1
124 master=surf2
125 slave=surf1
126 normal tolerance = 0.00001
127 tangential tolerance = 0.00001
128 end
129 begin interaction inter2
130 master=surf2
131 slave=surf3
132 normal tolerance = 0.00001
133 tangential tolerance = 0.00001
134 end
135 end contact definition mpc1
136
137 End Calore region myRegion
138
139 End Calore procedure myProcedure
140
141 End sierra Calore

Next: B. Maui XML syntax Up: A. Application Example Previous: A.1.2 Calore GUI Design

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node56.html (4 of 4) [8/8/2003 4:02:52 PM]

B. Maui XML syntax guide

Next: B.1 Tag Maui Up: A Maui User's Guide Previous: A.2 Text Input to

B. Maui XML syntax guide

Subsections

● B.1 Tag Maui
❍ B.1.1 Children allowed in Maui elements
❍ B.1.2 Attributes allowed in Maui elements

● B.2 Tag Class
❍ B.2.1 Children allowed in Class elements
❍ B.2.2 Attributes allowed in Class elements

● B.3 Tag Import
❍ B.3.1 Children allowed in Import elements
❍ B.3.2 Attributes allowed in Import elements

● B.4 Tag Fields
❍ B.4.1 Children allowed in Fields elements
❍ B.4.2 Attributes allowed in Fields elements

● B.5 Tag AppData
❍ B.5.1 Children allowed in AppData elements
❍ B.5.2 Attributes allowed in AppData elements

● B.6 Tag Action
❍ B.6.1 Children allowed in Action elements
❍ B.6.2 Attributes allowed in Action elements

● B.7 Tag CustomEditor
❍ B.7.1 Children allowed in CustomEditor elements
❍ B.7.2 Attributes allowed in CustomEditor elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node57.html (1 of 3) [8/8/2003 4:02:52 PM]

B. Maui XML syntax guide

● B.8 Tag Integer
❍ B.8.1 Children allowed in Integer elements
❍ B.8.2 Attributes allowed in Integer elements

● B.9 Tag Double
❍ B.9.1 Children allowed in Double elements
❍ B.9.2 Attributes allowed in Double elements

● B.10 Tag Boolean
❍ B.10.1 Children allowed in Boolean elements
❍ B.10.2 Attributes allowed in Boolean elements

● B.11 Tag String
❍ B.11.1 Children allowed in String elements
❍ B.11.2 Attributes allowed in String elements

● B.12 Tag Array
❍ B.12.1 Children allowed in Array elements
❍ B.12.2 Attributes allowed in Array elements

● B.13 Tag Table
❍ B.13.1 Children allowed in Table elements
❍ B.13.2 Attributes allowed in Table elements

● B.14 Tag Reference
❍ B.14.1 Children allowed in Reference elements
❍ B.14.2 Attributes allowed in Reference elements

● B.15 Tag Comment
❍ B.15.1 Children allowed in Comment elements
❍ B.15.2 Attributes allowed in Comment elements

● B.16 Tag Menu
❍ B.16.1 Children allowed in Menu elements
❍ B.16.2 Attributes allowed in Menu elements

● B.17 Tag Master
❍ B.17.1 Children allowed in Master elements
❍ B.17.2 Attributes allowed in Master elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node57.html (2 of 3) [8/8/2003 4:02:52 PM]

B. Maui XML syntax guide

● B.18 Tag Contents
❍ B.18.1 Children allowed in Contents elements
❍ B.18.2 Attributes allowed in Contents elements

● B.19 Tag Item
❍ B.19.1 Children allowed in Item elements
❍ B.19.2 Attributes allowed in Item elements

● B.20 Tag Header
❍ B.20.1 Children allowed in Header elements
❍ B.20.2 Attributes allowed in Header elements

● B.21 Tag Entries
❍ B.21.1 Children allowed in Entries elements
❍ B.21.2 Attributes allowed in Entries elements

● B.22 Tag Entry
❍ B.22.1 Children allowed in Entry elements
❍ B.22.2 Attributes allowed in Entry elements

● B.23 Tag Cell
❍ B.23.1 Children allowed in Cell elements
❍ B.23.2 Attributes allowed in Cell elements

● B.24 Tag type_name
❍ B.24.1 Children allowed in type_name elements
❍ B.24.2 Attributes allowed in type_name elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node57.html (3 of 3) [8/8/2003 4:02:52 PM]

B.1 Tag Maui

Next: B.1.1 Children allowed in Up: B. Maui XML syntax Previous: B. Maui XML syntax

B.1 Tag Maui
Every Maui XML file should contain a single element with tag Maui. This element can contain class
definitions and/or directives to import other Maui XML files.

Subsections

● B.1.1 Children allowed in Maui elements
● B.1.2 Attributes allowed in Maui elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node58.html [8/8/2003 4:02:52 PM]

B.1.1 Children allowed in Maui elements

Next: B.1.2 Attributes allowed in Up: B.1 Tag Maui Previous: B.1 Tag Maui

B.1.1 Children allowed in Maui elements

Tag Number Description and comments Examples

Class
any
number

Maui class specifications. example

Import
any
number

directives to load other Maui XML
files.

example

<Maui> : all Maui XML docs must begin and end with a <Maui> tag.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node59.html (1 of 2) [8/8/2003 4:02:53 PM]

B.1.1 Children allowed in Maui elements

<Class> : A class is a container for holding GUI components
(buttons, textboxes, checkboxes, etc).

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1"/>
 </Fields>
 </Class>
</Maui>

<Import> : Used to insert the contents of xml files into the RootClass.

<Maui RootClass="MyContainer">
 <Import filename="MyMauiXmlFile.xml"/>
</Maui>

Next: B.1.2 Attributes allowed in Up: B.1 Tag Maui Previous: B.1 Tag Maui

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node59.html (2 of 2) [8/8/2003 4:02:53 PM]

B.1.2 Attributes allowed in Maui elements

Next: B.2 Tag Class Up: B.1 Tag Maui Previous: B.1.1 Children allowed in

B.1.2 Attributes allowed in Maui elements

Attribute name Mandatory
Allowed
values

Description and
comments

Examples

RootClass no
legal class
name

The RootClass attribute
gives the name of classes
that will be loaded as the
root of the editor's data
structure. There must be at
least one occurence of
RootClass either in the
main XML file or imported
XML files. If there is more
than one occurence of
RootClass, Maui will
create a dropdown menu
that holds all of the classes
specified as RootClasses.

example

<Maui> : all Maui XML docs must begin and end with a <Maui> tag.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node60.html (1 of 3) [8/8/2003 4:02:53 PM]

B.1.2 Attributes allowed in Maui elements

RootClass : The <Maui> tag can contain more than one class. The RootClass attribute contains the
name of the class that will be displayed on the screen.

<Maui RootClass="Class1">

 <Class type="Class1">
 <Fields>
 <String name="string1" label="string1"/>
 </Fields>
 </Class>

 <Class type="Class2">
 <Fields>
 <String name="string2" label="string2"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node60.html (2 of 3) [8/8/2003 4:02:53 PM]

B.1.2 Attributes allowed in Maui elements

Next: B.2 Tag Class Up: B.1 Tag Maui Previous: B.1.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node60.html (3 of 3) [8/8/2003 4:02:53 PM]

B.2 Tag Class

Next: B.2.1 Children allowed in Up: B. Maui XML syntax Previous: B.1.2 Attributes allowed in

B.2 Tag Class
Class elements contain a specification of the fields and layout of a Maui class.

Subsections

● B.2.1 Children allowed in Class elements
● B.2.2 Attributes allowed in Class elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node61.html [8/8/2003 4:02:53 PM]

B.2.1 Children allowed in Class elements

Next: B.2.2 Attributes allowed in Up: B.2 Tag Class Previous: B.2 Tag Class

B.2.1 Children allowed in Class elements

Tag Number Description and comments Example

Action any number
Allows for buttons to be placed
within the class editor

example

CustomEditor 0-1
Allows the class to use a non-
standard editor.

example

Fields 0-1
The Fields child contains all of
the data members of this class.

example

AppData 0-1
a free form block of XML for data
where no editor is needed

example

Help 0-1

Places a HELP icon on the screen.
if the end-user clicks on the icon
then helpful information pops up
on the screen.

example

Subclasses 0-1
A tag that is used to hold child
classes.

example

<Class> : creates a container to hold GUI components

 <Class type="MyContainer" label="My container">
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node62.html (1 of 6) [8/8/2003 4:02:54 PM]

B.2.1 Children allowed in Class elements

<Action> : Used to display buttons

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="My container">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node62.html (2 of 6) [8/8/2003 4:02:54 PM]

B.2.1 Children allowed in Class elements

<CustomEditor> : Used to insert a custom editor into Maui

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <CustomEditor
 name="Maui.Editors.ExampleCustomEditor_BareBonesCustomEditor">
 </CustomEditor>
 </Class>
</Maui>

<Fields> : used to populate the container with GUI components

 <Class type="MyContainer" label="My container">
 <Fields>
 <String name="textbox1" label="textbox1" default="one"/>
 <String name="textbox2" label="textbox2" default="two"/>
 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node62.html (3 of 6) [8/8/2003 4:02:54 PM]

B.2.1 Children allowed in Class elements

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information to
MauiActions, custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node62.html (4 of 6) [8/8/2003 4:02:54 PM]

B.2.1 Children allowed in Class elements

<Help> : Used to display helpful information

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="My container">
 <Help>
 Display this helpful info
 </Help>
 </Class>
</Maui>

<Subclasses> : used to populate container with child classes

 <Class type="MyContainer" label="My container">
 <Subclasses>
 <Class type="Child1" label="child1">
 <Fields>
 <String name="child1textbox" label="child 1"/>
 </Fields>
 </Class>
 <Class type="Child2" label="child2">
 <Fields>
 <String name="child2textbox" label="child 2"/>
 </Fields>
 </Class>
 </Subclasses>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node62.html (5 of 6) [8/8/2003 4:02:54 PM]

B.2.1 Children allowed in Class elements

Next: B.2.2 Attributes allowed in Up: B.2 Tag Class Previous: B.2 Tag Class

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node62.html (6 of 6) [8/8/2003 4:02:54 PM]

B.2.2 Attributes allowed in Class elements

Next: B.3 Tag Import Up: B.2 Tag Class Previous: B.2.1 Children allowed in

B.2.2 Attributes allowed in Class elements

Attribute name Mandatory
Allowed
values

Description and comments Example

type yes
any legal
class name

The value of the type attribute
gives the name of the class

example

label no any string

The value of the label
attribute gives the string that
will be displayed where this
class is used.

example

base no
any legal
class name

The value of the base attribute
gives the name of this class' base
class. Only required if we are
defining a derived class.

example

altName no any string

a name used when an alternative
to the regular class name is
neccesary for output. The
default value for altName is the
type of the class

example

selectionLabel no any string

The label displayed next to a
subclass Selection menu if this
class has subclasses

example

example

collapsible no true or false

The panel for this class can be
expanded and collapsed with a
toggle button. If no value is
given, collapsible is assumed to
be false.

example

beginCollapsed no true or false

If the panel is collpasible, this
will give the initial state of that
panel. By default, a collapsible
panel starts out expanded.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (1 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

useTab no true or false

If this is true, the panel will be
displayed in a tabbed pane with
the other class panels. If false, it
will be displayed by itself. If
there is no collapsible attribute,
useTab will default to true. If
there is a collapsible attribute,
useTab will default to false.

example

visible no true or false
Determines if the class is visible
or invisible.

example

tooltip no any string not yet implemented example

startingsubclass no
name of a
subclass

When this class is first rendered
on the screen, then which child
class is visible on the screen?

example

layout no flow
If layout is set to "flow" then the
GUI components are laid out
from left to right, top to bottom.

example

border no true or false
Determines if the border (that
surrounds the class) is visible or
invisible.

example

A Class is a container to hold GUI components (textboxes, button, checkboxes, etc.).

<Class> : creates a container to hold GUI components

 <Class type="MyContainer" label="My container">
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (2 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

type: Uniquely identifies the class.

 <Class type="MyContainer" label="My container">
 </Class>

label: The label that appears above the class

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="This is my label" collapsible="true">
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (3 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

base: Used by a child class to identify the parent

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 </Class>
 <Class type="MyChild" base="MyContainer">
 </Class>
</Maui>

altName: An alternate name used by the RootClass. Can be used by custom editors.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" altName="MyAltName">
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (4 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

selectionLabel: if the end-user can use a pull-down menu to select a child class then this label appears to the left of the
menu.

<Maui RootClass="MyContainer">
 <Class type="MyContainer"
 selectionLabel="Select one of these child classes">
 </Class>

 <Class type="Child1" label="child 1" base="MyContainer"/>
 <Class type="Child2" label="child 2" base="MyContainer"/>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (5 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

selectionLabel: if the end-user can use a pull-down menu to select a child class then this label appears to the left of the
menu.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" selectionLabel="Select one of these child classes">
 <Subclasses>
 <Class type="Child1" label="child 1">
 </Class>
 <Class type="Child2" label="child 2">
 </Class>
 </Subclasses>
 </Class>
</Maui>

collapsible: The contents of a class can be hidden by clicking on the +/- button.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" collapsible="true" label="My Class">
 <Fields>
 <String name="myString" label=" my string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (6 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

beginCollapsed: When the class first appears on the screen, is the class collapsed or uncollapsed?

<Maui RootClass="MyContainer">
 <Class type="MyContainer" collapsible="true"
 beginCollapsed="true" label="My Class">
 <Fields>
 <String name="myString" label=" my string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (7 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

useTab: The end-user can select a child class by clicking on a tab

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="My Class">
 <Fields>
 <Class type="child1" label="child one" useTab="true">
 <Fields>
 <String name="string1" label="string1"/>
 </Fields>
 </Class>
 <Class type="child2" label="child two" useTab="true">
 <Fields>
 <String name="string2" label="string2"/>
 </Fields>
 </Class>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (8 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

visible: Determines if the class is visible on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="My Class">
 <Fields>
 <Class type="child1" label="child1" visible="false" useTab="false"/>
 <Class type="child2" label="child2" visible="true" useTab="false"/>
 </Fields>
 </Class>
</Maui>

tooltip: This feature is not yet implemented

startingSubclass: When this class is first rendered on the screen, then which child class is displayed?

<Maui RootClass="MyContainer">
 <Class type="MyContainer" startingSubclass="Child2">
 <Subclasses>
 <Class type="Child1" label="child 1">
 <Fields>
 <String name="child1" label="child 1"/>
 </Fields>
 </Class>
 <Class type="Child2" label="child 2">
 <Fields>
 <String name="child2" label="child 2"/>
 </Fields>
 </Class>
 </Subclasses>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (9 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

layout: if set to "flow" then GUI components are laid out from left-to-right, top-to-bottom.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" startingSubclass="Child2" layout="flow">
 <Fields>
 <String name="string1" label="string1"/>
 <String name="string2" label="string2"/>
 <String name="string3" label="string3"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (10 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

border: Determines if a border is drawn around the class.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>

 <Class type="class1" label="class1"
 collapsible="true" border="false">
 <Fields>
 <String name="string1" label="string1"/>
 </Fields>
 </Class>

 <Class type="class2" label="class2"
 collapsible="true" border="true">
 <Fields>
 <String name="string2" label="string2"/>
 </Fields>
 </Class>

 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (11 of 12) [8/8/2003 4:02:55 PM]

B.2.2 Attributes allowed in Class elements

Next: B.3 Tag Import Up: B.2 Tag Class Previous: B.2.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node63.html (12 of 12) [8/8/2003 4:02:55 PM]

B.3 Tag Import

Next: B.3.1 Children allowed in Up: B. Maui XML syntax Previous: B.2.2 Attributes allowed in

B.3 Tag Import
Import elements contain the name of a file from which Maui should read additional input.

Subsections

● B.3.1 Children allowed in Import elements
● B.3.2 Attributes allowed in Import elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node64.html [8/8/2003 4:02:55 PM]

B.3.1 Children allowed in Import elements

Next: B.3.2 Attributes allowed in Up: B.3 Tag Import Previous: B.3 Tag Import

B.3.1 Children allowed in Import elements

None

Next: B.3.2 Attributes allowed in Up: B.3 Tag Import Previous: B.3 Tag Import

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node65.html [8/8/2003 4:02:55 PM]

B.3.2 Attributes allowed in Import elements

Next: B.4 Tag Fields Up: B.3 Tag Import Previous: B.3.1 Children allowed in

B.3.2 Attributes allowed in Import elements

Attribute name Mandatory
Allowed
values

Description and
comments

Examples

filename yes
path to a
Maui file

The value gives the name
of an XML file from which
Maui can read in more
definitions.

example

<Import> : Used to insert the contents of an xml file into a class.

<Maui RootClass="MyContainer">
 <Import filename="MyMauiXmlFile.xml"/>
</Maui>

filename: The name of the file that contains xml code.

<Maui RootClass="MyContainer">
 <Import filename="MyMauiXmlFile.xml"/>
</Maui>

Next: B.4 Tag Fields Up: B.3 Tag Import Previous: B.3.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node66.html [8/8/2003 4:02:55 PM]

B.4 Tag Fields

Next: B.4.1 Children allowed in Up: B. Maui XML syntax Previous: B.3.2 Attributes allowed in

B.4 Tag Fields
Fields elements contain as children the data members of a class.

Subsections

● B.4.1 Children allowed in Fields elements
● B.4.2 Attributes allowed in Fields elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node67.html [8/8/2003 4:02:56 PM]

B.4.1 Children allowed in Fields elements

Next: B.4.2 Attributes allowed in Up: B.4 Tag Fields Previous: B.4 Tag Fields

B.4.1 Children allowed in Fields elements

Tag Number Description and comments Examples

Integer any number zero or more integer variables example

String any number zero or more string variables example

Double any number zero or more double variables example

Boolean any number
zero or more boolean (logical)
variables

example

Array any number zero or more array variables example

Table any number zero or more tables example

Reference any number zero or more reference variables example

Comment any number zero or more comments example

type_name any number
zero or more class data members of
type type_name

example

BR any number
zero or more line breaks; each line
break skips to the next line.

example

Class any number zero or more child classes. example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (1 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

<Fields> : Contains the GUI components (buttons, textboxes, checkboxes, etc) that will be placed on
the screen.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"/>
 </Fields>
 </Class>
</Maui>

<Integer> : display a textbox that accepts integer values

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (2 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

<String> : display a textbox or a pull-down menu

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string"/>
 <String name="myMenu" label="menu" default="two">
 <Menu options="One|Two|Thee"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (3 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

<Double> : display a textbox that accepts floating point numbers

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double"/>
 </Fields>
 </Class>
</Maui>

<Boolean> : display a checkbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (4 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

<Array>

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (5 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

<Table>

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (6 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (7 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

<Reference> : Select one choice from a collection of values that the end-user filled in (array, table,
etc.)

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>

 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>

 <Reference name="myReference" path="myArray"/>

 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (8 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

</Maui>

<Comment> : Display text on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Comment name="myComment">
 This is a comment.
 </Comment>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (9 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

child class

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"/>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (10 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

 : line break, skip to the next line

<Maui RootClass="MyContainer">
 <Class type="MyContainer" layout="flow">
 <Fields>
 <String name="string1" label="string1"/>
 <String name="string2" label="string2"/>

 <String name="string3" label="string3"/>
 <String name="string4" label="string4"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (11 of 12) [8/8/2003 4:02:57 PM]

B.4.1 Children allowed in Fields elements

<Class> : Display a child class

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Class type="myChild" label="myChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
 </Fields>
 </Class>
</Maui>

Next: B.4.2 Attributes allowed in Up: B.4 Tag Fields Previous: B.4 Tag Fields

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node68.html (12 of 12) [8/8/2003 4:02:57 PM]

B.4.2 Attributes allowed in Fields elements

Next: B.5 Tag AppData Up: B.4 Tag Fields Previous: B.4.1 Children allowed in

B.4.2 Attributes allowed in Fields elements

None

Next: B.5 Tag AppData Up: B.4 Tag Fields Previous: B.4.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node69.html [8/8/2003 4:02:57 PM]

B.5 Tag AppData

Next: B.5.1 Children allowed in Up: B. Maui XML syntax Previous: B.4.2 Attributes allowed in

B.5 Tag AppData
AppData is a free form block of XML that will be left untouched by Maui and passed on with the rest
of the Maui XML to an action.

Subsections

● B.5.1 Children allowed in AppData elements
● B.5.2 Attributes allowed in AppData elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node70.html [8/8/2003 4:02:57 PM]

B.5.1 Children allowed in AppData elements

Next: B.5.2 Attributes allowed in Up: B.5 Tag AppData Previous: B.5 Tag AppData

B.5.1 Children allowed in AppData elements

Any well formed XML example

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information
to MauiActions, custom editors, and external applications.

<AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
</AppData>

Next: B.5.2 Attributes allowed in Up: B.5 Tag AppData Previous: B.5 Tag AppData

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node71.html [8/8/2003 4:02:57 PM]

B.5.2 Attributes allowed in AppData elements

Next: B.6 Tag Action Up: B.5 Tag AppData Previous: B.5.1 Children allowed in

B.5.2 Attributes allowed in AppData elements

None

Next: B.6 Tag Action Up: B.5 Tag AppData Previous: B.5.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node72.html [8/8/2003 4:02:58 PM]

B.6 Tag Action

Next: B.6.1 Children allowed in Up: B. Maui XML syntax Previous: B.5.2 Attributes allowed in

B.6 Tag Action
Action will add a button to the class editor that will trigger a developer specified Action when pressed.
The children of Action should contain any additional information that the Action may need to properly
process the request.

Subsections

● B.6.1 Children allowed in Action elements
● B.6.2 Attributes allowed in Action elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node73.html [8/8/2003 4:02:58 PM]

B.6.1 Children allowed in Action elements

Next: B.6.2 Attributes allowed in Up: B.6 Tag Action Previous: B.6 Tag Action

B.6.1 Children allowed in Action elements

Any well formed XML example

<Action> : Used to display a button

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="My container">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node74.html (1 of 2) [8/8/2003 4:02:58 PM]

B.6.1 Children allowed in Action elements

Next: B.6.2 Attributes allowed in Up: B.6 Tag Action Previous: B.6 Tag Action

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node74.html (2 of 2) [8/8/2003 4:02:58 PM]

B.6.2 Attributes allowed in Action elements

Next: B.7 Tag CustomEditor Up: B.6 Tag Action Previous: B.6.1 Children allowed in

B.6.2 Attributes allowed in Action elements

Attribute name Mandatory Allowed values Description and comments Examples

label yes
any string The label to print on the face of

the button
example

class yes
the action
classname

The name of the Action class to
create a button for.

example

verbose no

true or false The Action will recieve the
complete verbose XML
description of the Maui contents
if verbose is true, otherwise, the
compressed XML will be
recieved. By default verbose is
assumed to be false, and the
compressed XML will be used.

example

path no
path to the class The full path to the class file of

the Action used
example

package no
package name The package name of the Action

class to load.
example

toolTip no

any string A tool tip will be displayed when
the cursor is placed over the
Action Button. This string will
give the text to display in that
tool tip. By default the label of
the action will be used for the
tool tip.

example

mode no

verbose,
compressed, or
tree

This attribute pertains only to a
ViewAction. If mode is set,
then the specified display style
(verbose, compressed, or tree)
will be used when the
ViewAction button is pressed.
By default the display type is
compressed.

example(verbose)

example(compressed)

example(tree)

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (1 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

outputFormat no

verbose,
compressed, or
input

When the end-user presses the
button, xml data is sent to the
Java code. The xml data can be
in one of 3 formats. Data saved
with "input" format can be feed
back into Maui as an input deck.
Data saved with "verbose"
format can easily be reformatted
into the input deck of an external
application. "Compressed" data
is small enough to fit on the
screen for easy viewing.

example(verbose)

example(compressed)

example(input)

<Action> : Used to display a button

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="My container">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 </Class>
</Maui>

label: The text that appears inside the button

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (2 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

class: the java class that will be invoked when the end-user clicks on the button

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 </Class>
</Maui>

verbose: When the end-use presses the button, xml data is sent to your java code. If verbose is true then then the xml data
is in a verbose fomat. If verbose is false then the xml data is in a compressed format.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction" verbose="true"/>
 <Fields>
 <String name="myString" label="my string" default="hello"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (3 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

path: the path to the Java code (i.e. the location of the folder that contains the java code)

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View"
 path="c:/myJavaCode"
 class="Maui.Interface.ViewAction"/>
 </Class>
</Maui>

package: The package where your java code is located

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" package="Maui.Interface" class="ViewAction"/>
 </Class>
</Maui>

tootip: not yet implements

mode: The ViewAction can display the xml data in one of 3 different modes:
verbose, compressed, tree

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction" mode="verbose"/>
 <Fields>
 <String name="myString" label="my string" default="hello"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (4 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

mode: The ViewAction can display the xml data in one of 3 different modes:
verbose, compressed, tree

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction" mode="compressed"/>
 <Fields>
 <String name="myString" label="my string" default="hello"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (5 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

mode: The ViewAction can display the xml data in one of 3 different modes:
verbose, compressed, tree

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction" mode="tree"/>
 <Fields>
 <String name="myString" label="my string" default="hello"/>
 </Fields>
 </Class>
</Maui>

outputFormat: The format of the xml data that is sent to the java code.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction"
 outputFormat="compressed"/>
 <Fields>
 <String name="myString" label="my string" default="hello"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (6 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

outputFormat: The format of the xml data that is sent to the java code.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction"
 outputFormat="verbose"/>
 <Fields>
 <String name="myString" label="my string" default="hello"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (7 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

outputFormat: The format of the xml data that is sent to the java code.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Action label="View" class="Maui.Interface.ViewAction"
 outputFormat="input"/>
 <Fields>
 <String name="myString" label="my string" default="hello"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (8 of 9) [8/8/2003 4:02:59 PM]

B.6.2 Attributes allowed in Action elements

Next: B.7 Tag CustomEditor Up: B.6 Tag Action Previous: B.6.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node75.html (9 of 9) [8/8/2003 4:02:59 PM]

B.7 Tag CustomEditor

Next: B.7.1 Children allowed in Up: B. Maui XML syntax Previous: B.6.2 Attributes allowed in

B.7 Tag CustomEditor
CustomEditor elements allow the developer to add their own GUI components to Maui. The children
of CustomEditor should contain any additional information that the Editor may need to display
properly.

Subsections

● B.7.1 Children allowed in CustomEditor elements
● B.7.2 Attributes allowed in CustomEditor elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node76.html [8/8/2003 4:02:59 PM]

B.7.1 Children allowed in CustomEditor elements

Next: B.7.2 Attributes allowed in Up: B.7 Tag CustomEditor Previous: B.7 Tag CustomEditor

B.7.1 Children allowed in CustomEditor elements

Any well formed XML

<CustomEditor> : Used to insert a custom editor into Maui

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <CustomEditor
 name="Maui.Editors.ExampleCustomEditor_BareBonesCustomEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node77.html (1 of 2) [8/8/2003 4:02:59 PM]

B.7.1 Children allowed in CustomEditor elements

Next: B.7.2 Attributes allowed in Up: B.7 Tag CustomEditor Previous: B.7 Tag CustomEditor

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node77.html (2 of 2) [8/8/2003 4:02:59 PM]

B.7.2 Attributes allowed in CustomEditor elements

Next: B.8 Tag Integer Up: B.7 Tag CustomEditor Previous: B.7.1 Children allowed in

B.7.2 Attributes allowed in CustomEditor elements

Attribute
name

Mandatory
Allowed
values

Description and comments examples

name yes

the
editor
class
name

The class name of the Editor to use
for this Item.

example

path no
path to
the class

The full path to the class file of the
Editor to use.

example

package no
package
name

The full package name of the Custom
Editor.

example

<CustomEditor> : Used to insert a custom editor into Maui

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <CustomEditor
 name="Maui.Editors.ExampleCustomEditor_BareBonesCustomEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node78.html (1 of 3) [8/8/2003 4:03:00 PM]

B.7.2 Attributes allowed in CustomEditor elements

name: The name of the custom editor

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <CustomEditor
 name="Maui.Editors.ExampleCustomEditor_BareBonesCustomEditor"/>
 </Class>
</Maui>

path: The path to the java code (i.e. the folder that contains the java code).

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <CustomEditor path="c:/MyMauiEditors"
 name="Maui.Editors.ExampleCustomEditor_BareBonesCustomEditor"/>
 </Class>
</Maui>

package: the package that contains the java code

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <CustomEditor package="Maui.Editors"
 name="ExampleCustomEditor_BareBonesCustomEditor"/>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node78.html (2 of 3) [8/8/2003 4:03:00 PM]

B.7.2 Attributes allowed in CustomEditor elements

Next: B.8 Tag Integer Up: B.7 Tag CustomEditor Previous: B.7.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node78.html (3 of 3) [8/8/2003 4:03:00 PM]

B.8 Tag Integer

Next: B.8.1 Children allowed in Up: B. Maui XML syntax Previous: B.7.2 Attributes allowed in

B.8 Tag Integer
Integer elements represent integer-valued variables.

Subsections

● B.8.1 Children allowed in Integer elements
● B.8.2 Attributes allowed in Integer elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node79.html [8/8/2003 4:03:00 PM]

B.8.1 Children allowed in Integer elements

Next: B.8.2 Attributes allowed in Up: B.8 Tag Integer Previous: B.8 Tag Integer

B.8.1 Children allowed in Integer elements

Tag Number Description and comments Examples

CustomEditor 0-1
Allows the Integer to use a non-
standard editor.

example

AppData 0-1
a free form block of XML used for
data where no editor is needed

example

Help 0-1
Display a help icon. If the end-
user presses the help icon then pop
up some useful information.

example

<Integer> : display a textbox that accepts integer values

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node80.html (1 of 3) [8/8/2003 4:03:00 PM]

B.8.1 Children allowed in Integer elements

<CustomEditor> : You can write you own customized editor.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInteger" label="integer">
 <CustomEditor name="MyIntegerEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
 </Integer>
 </Fields>
 </Class>
</Maui>

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information
to MauiActions, custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInteger" label="integer">
 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>
 </Integer>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node80.html (2 of 3) [8/8/2003 4:03:00 PM]

B.8.1 Children allowed in Integer elements

<Help> : Display information that may be helpful to the end-user.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer">
 <Help>
 This is helpful info.
 This is another line of helpful info.
 </Help>
 </Integer>
 </Fields>
 </Class>
</Maui>

Next: B.8.2 Attributes allowed in Up: B.8 Tag Integer Previous: B.8 Tag Integer

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node80.html (3 of 3) [8/8/2003 4:03:00 PM]

B.8.2 Attributes allowed in Integer elements

Next: B.9 Tag Double Up: B.8 Tag Integer Previous: B.8.1 Children allowed in

B.8.2 Attributes allowed in Integer elements

Attribute name Mandatory
Allowed
values

Description and
comments

Examples

name yes any legal name name for this variable example

label no any string
string to be used as a
descriptive label

example

default no any integer
default value of this
variable

example

lower no any integer

the lower limit for
integers that can be
entered; must be less than
upper

example

upper no any integer

the upper limit for
integers that can be
entered; must be greater
than lower

example

optional no true/false
indicates if a value needs
to be filled in

example

editable no true/false
indicates if the value can
be edited

example

columnWidth no an integer
gives the number of
characters that should be
displayed in the text field.

example

tooltip no any string
When the end-user moves
the mouse over the label
then display a tooltip.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (1 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

helpMessage no any string

Display a HELP icon.
Whenever the end-user
clicks on the icon, a
helpful message pops up
on the screen.

example

visible no true or false
Is the textbox visible on
the screen.

example

mauiAction no
name of a
MauiAction.

This java class is invoked
whenever the end-user
changes the contents of
the textbox.

example

insets no true or false
If true then surround the
GUI component with a lot
of white space.

example

<Integer> : display a textbox that accepts integer values

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (2 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

name: the name of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"/>
 </Fields>
 </Class>
</Maui>

label: The text that is displayed to the left of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (3 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

default: The value that is displayed inside the textbox, when the textbox first appears on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer" default="123"/>
 </Fields>
 </Class>
</Maui>

lower: The smallest number the end-user is allowed to type into the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer" lower="0"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (4 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

upper: The largest number the end-user is allowed to type into the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer" upper="100"/>
 </Fields>
 </Class>
</Maui>

optional: If true then the end-user is not forced to insert a value into the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer" optional="true"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (5 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

editable: If false then the end-user can not change the contents of the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt"
 label="integer"
 editable="false"
 default="123"/>
 </Fields>
 </Class>
</Maui>

columnWidth: the number of characters that can fit inside the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer" columnWidth="3"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (6 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

tooltip: Assign a tooltip to the label

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"
 toolTip="This is a tooltip"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (7 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

helpMessage: Display help

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="myInt" label="integer"
 helpMessage="This is helpful info"/>
 </Fields>
 </Class>
</Maui>

visible: Is the textbox visible on the screen?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="integer1" label="integer1"
 visible="false" default="123"/>
 <Integer name="integer2" label="integer2"
 visible="true" default="456"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (8 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

MauiAction: This Java class is invoked whenever the end-user changes the contents of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="integer1" label="integer1"
 mauiAction="MyMauiAction"/>
 </Fields>
 </Class>
</Maui>

insets: Is there a lot of white space surrounding the textbox?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Integer name="integer1" label="integer"/>
 <Integer name="integer2" label="integer" insets="true"/>
 <Integer name="integer3" label="integer" insets="false"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (9 of 10) [8/8/2003 4:03:01 PM]

B.8.2 Attributes allowed in Integer elements

Next: B.9 Tag Double Up: B.8 Tag Integer Previous: B.8.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node81.html (10 of 10) [8/8/2003 4:03:01 PM]

B.9 Tag Double

Next: B.9.1 Children allowed in Up: B. Maui XML syntax Previous: B.8.2 Attributes allowed in

B.9 Tag Double
Double elements represent double-precision-valued variables.

Subsections

● B.9.1 Children allowed in Double elements
● B.9.2 Attributes allowed in Double elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node82.html [8/8/2003 4:03:01 PM]

B.9.1 Children allowed in Double elements

Next: B.9.2 Attributes allowed in Up: B.9 Tag Double Previous: B.9 Tag Double

B.9.1 Children allowed in Double elements

Tag Number Description and comments Examples

CustomEditor 0-1
Allows the Double to use a non-
standard editor.

example

AppData 0-1
a free form block of XML used for
data where no editor is needed

example

Help 0-1
Display a help icon. If the end-
user presses the help icon then pop
up some useful information.

example

<Double> : display a textbox that accepts floating point numbers

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node83.html (1 of 3) [8/8/2003 4:03:02 PM]

B.9.1 Children allowed in Double elements

<CustomEditor> : You can write you own customized editor.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double">
 <CustomEditor name="MyDoubleEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
 </Double>
 </Fields>
 </Class>
</Maui>

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information
to MauiActions, custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double">
 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>
 </Double>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node83.html (2 of 3) [8/8/2003 4:03:02 PM]

B.9.1 Children allowed in Double elements

<Help> : Display information that may be helpful to the end-user.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double">
 <Help>
 This is helpful info.
 This is another line of helpful info.
 </Help>
 </Double>
 </Fields>
 </Class>
</Maui>

Next: B.9.2 Attributes allowed in Up: B.9 Tag Double Previous: B.9 Tag Double

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node83.html (3 of 3) [8/8/2003 4:03:02 PM]

B.9.2 Attributes allowed in Double elements

Next: B.10 Tag Boolean Up: B.9 Tag Double Previous: B.9.1 Children allowed in

B.9.2 Attributes allowed in Double elements

Attribute name Mandatory
Allowed
values

Description and comments Examples

name yes any legal name name for this variable example

label no any string
string to be used as a descriptive
label

example

default no any double default value of this variable example

lower no any double
the lower limit for values that
can be entered; must be less than
upper

example

upper no any double
the upper limit for values that
can be entered; must be greater
than lower

example

optional no true/false
indicates if a value needs to be
filled in

example

editable no true/false
indicates if the value can be
edited

example

columnWidth no an integer
gives the number of characters
that should be displayed in the
text field.

example

tooltip no any string
When the end-user moves the
mouse over the label then
display a tooltip.

example

helpMessage no any string

Display a HELP icon.
Whenever the end-user clicks on
the icon, a helpful message pops
up on the screen.

example

visible no true or false
Is the textbox visible on the
screen.

example

mauiAction no
name of a
MauiAction.

This java class is invoked
whenever the end-user changes
the contents of the textbox.

example

insets no true or false
If true then surround the GUI
component with a lot of white
space.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (1 of 8) [8/8/2003 4:03:03 PM]

B.9.2 Attributes allowed in Double elements

<Double> : display a textbox that accepts double values

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double"/>
 </Fields>
 </Class>
</Maui>

name: the name of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double"/>
 </Fields>
 </Class>
</Maui>

label: The text that is displayed to the left of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (2 of 8) [8/8/2003 4:03:03 PM]

B.9.2 Attributes allowed in Double elements

default: The value that is displayed inside the textbox, when the textbox first appears on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="double1" label="double1" default="123"/>
 <Double name="double2" label="double2" default="456"/>
 </Fields>
 </Class>
</Maui>

lower: The smallest number the end-user is allowed to type into the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double" lower="0"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (3 of 8) [8/8/2003 4:03:03 PM]

B.9.2 Attributes allowed in Double elements

upper: The largest number the end-user is allowed to type into the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double" upper="100"/>
 </Fields>
 </Class>
</Maui>

optional: If true then the end-user is not forced to insert a value into the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="double1" label="double1" optional="true"/>
 <Double name="double2" label="double2" optional="false"/>
 </Fields>
 </Class>
</Maui>

editable: If false then the end-user can not change the contents of the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="double1"
 label="double1"
 editable="true"
 default="123"/>
 <Double name="double2"
 label="double2"
 editable="false"

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (4 of 8) [8/8/2003 4:03:03 PM]

B.9.2 Attributes allowed in Double elements

 default="123"/>
 </Fields>
 </Class>
</Maui>

columnWidth: the number of characters that can fit inside the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="double1" label="double1" columnWidth="1"/>
 <Double name="double2" label="double2"/>
 <Double name="double3" label="double3" columnWidth="30"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (5 of 8) [8/8/2003 4:03:03 PM]

B.9.2 Attributes allowed in Double elements

tooltip: Assign a tooltip to the label

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double" toolTip="This is a tooltip"/>
 </Fields>
 </Class>
</Maui>

helpMessage: Display help

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="myDouble" label="double"
 helpMessage="This is helpful info"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (6 of 8) [8/8/2003 4:03:03 PM]

B.9.2 Attributes allowed in Double elements

visible: Is the textbox visible on the screen?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="double1" label="double1"
 visible="false" default="123"/>
 <Double name="double2" label="double2"
 visible="true" default="456"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (7 of 8) [8/8/2003 4:03:03 PM]

B.9.2 Attributes allowed in Double elements

MauiAction: This Java class is invoked whenever the end-user changes the contents of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="double1" label="double1"
 mauiAction="MyMauiAction"/>
 </Fields>
 </Class>
</Maui>

insets: Is there a lot of white space surrounding the textbox?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Double name="double1" label="double"/>
 <Double name="double2" label="double" insets="true"/>
 <Double name="double3" label="double" insets="false"/>
 </Fields>
 </Class>
</Maui>

Next: B.10 Tag Boolean Up: B.9 Tag Double Previous: B.9.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node84.html (8 of 8) [8/8/2003 4:03:03 PM]

B.10 Tag Boolean

Next: B.10.1 Children allowed in Up: B. Maui XML syntax Previous: B.9.2 Attributes allowed in

B.10 Tag Boolean
Boolean elements represent boolean variables.

Subsections

● B.10.1 Children allowed in Boolean elements
● B.10.2 Attributes allowed in Boolean elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node85.html [8/8/2003 4:03:03 PM]

B.10.1 Children allowed in Boolean elements

Next: B.10.2 Attributes allowed in Up: B.10 Tag Boolean Previous: B.10 Tag Boolean

B.10.1 Children allowed in Boolean elements

Tag Number Description and comments Examples

CustomEditor 0-1
Allows the Boolean to use a non-
standard editor.

example

AppData 0-1
a free form block of XML used for
data where no editor is needed

example

Help 0-1
Display a help icon. If the end-user
presses the help icon then pop up
some useful information.

example

<Boolean> : display a checkbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node86.html (1 of 3) [8/8/2003 4:03:03 PM]

B.10.1 Children allowed in Boolean elements

<CustomEditor> : You can write you own customized editor.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean">
 <CustomEditor name="MyBooleanEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
 </Boolean>
 </Fields>
 </Class>
</Maui>

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information
to MauiActions, custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean">
 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>
 </Boolean>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node86.html (2 of 3) [8/8/2003 4:03:03 PM]

B.10.1 Children allowed in Boolean elements

<Help> : Display information that may be helpful to the end-user.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean">
 <Help>
 This is helpful info.
 This is another line of helpful info.
 </Help>
 </Boolean>
 </Fields>
 </Class>
</Maui>

Next: B.10.2 Attributes allowed in Up: B.10 Tag Boolean Previous: B.10 Tag Boolean

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node86.html (3 of 3) [8/8/2003 4:03:03 PM]

B.10.2 Attributes allowed in Boolean elements

Next: B.11 Tag String Up: B.10 Tag Boolean Previous: B.10.1 Children allowed in

B.10.2 Attributes allowed in Boolean elements

Attribute name Mandatory
Allowed
values

Description and comments Examples

name yes
any legal
name

name for this variable example

label no any string
string to be used as a
descriptive label

example

default no true/false default value of this variable example

optional no true/false
indicates if a value needs to
be filled in

example

editable no true/false
indicates if the value can be
edited

example

tooltip no any string
When the end-user moves
the mouse over the label
then display a tooltip.

example

helpMessage no any string

Display a HELP icon.
Whenever the end-user
clicks on the icon, a helpful
message pops up on the
screen.

example

visible no true or false
Is the checkbox visible on
the screen.

example

insets no true or false
If true then surround the
GUI component with a lot of
white space.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (1 of 8) [8/8/2003 4:03:04 PM]

B.10.2 Attributes allowed in Boolean elements

<Boolean> : display a checkbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean"/>
 </Fields>
 </Class>
</Maui>

name: the name of the checkbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (2 of 8) [8/8/2003 4:03:04 PM]

B.10.2 Attributes allowed in Boolean elements

label: The text that is displayed adjacent to the checkbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean"/>
 </Fields>
 </Class>
</Maui>

default: The checked/unchecked state of the checkbox, when the checkbox first appears on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="boolean1" label="boolean1" default="true"/>
 <Boolean name="boolean2" label="boolean2" default="false"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (3 of 8) [8/8/2003 4:03:04 PM]

B.10.2 Attributes allowed in Boolean elements

optional: If true then the end-user is not forced to insert a value into the checkbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="boolean1" label="boolean1" optional="true"/>
 <Boolean name="boolean2" label="boolean2" optional="false"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (4 of 8) [8/8/2003 4:03:04 PM]

B.10.2 Attributes allowed in Boolean elements

editable: If false then the end-user can not change the contents of the checkbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="boolean1"
 label="boolean1"
 editable="true"
 default="true"/>
 <Boolean name="boolean2"
 label="boolean2"
 editable="false"
 default="true"/>
 </Fields>
 </Class>
</Maui>

tooltip: Assign a tooltip to the label

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean"
 toolTip="This is a tooltip"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (5 of 8) [8/8/2003 4:03:04 PM]

B.10.2 Attributes allowed in Boolean elements

helpMessage: Display help

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="myBoolean" label="boolean"
 helpMessage="This is helpful info"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (6 of 8) [8/8/2003 4:03:04 PM]

B.10.2 Attributes allowed in Boolean elements

visible: Is the textbox visible on the screen?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="boolean1" label="boolean1"
 visible="false" default="true"/>
 <Boolean name="boolean2" label="boolean2"
 visible="true" default="true"/>
 </Fields>
 </Class>
</Maui>

insets: Is there a lot of white space surrounding the checkbox?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Boolean name="boolean1" label="boolean"/>
 <Boolean name="boolean2" label="boolean" insets="true"/>
 <Boolean name="boolean3" label="boolean" insets="false"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (7 of 8) [8/8/2003 4:03:04 PM]

B.10.2 Attributes allowed in Boolean elements

Next: B.11 Tag String Up: B.10 Tag Boolean Previous: B.10.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node87.html (8 of 8) [8/8/2003 4:03:04 PM]

B.11 Tag String

Next: B.11.1 Children allowed in Up: B. Maui XML syntax Previous: B.10.2 Attributes allowed in

B.11 Tag String
String elements represent string variables.

Subsections

● B.11.1 Children allowed in String elements
● B.11.2 Attributes allowed in String elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node88.html [8/8/2003 4:03:04 PM]

B.11.1 Children allowed in String elements

Next: B.11.2 Attributes allowed in Up: B.11 Tag String Previous: B.11 Tag String

B.11.1 Children allowed in String elements

Tag Number Description and comments Examples

CustomEditor 0-1
Allows the string to use a non-
standard editor.

example

Menu 0-1
use an options list (combo box,
radio buttons, list) for string
selection

example

TextArea 0-1
Use a text area for multiple line
strings

example

AppData 0-1
a free form block of XML used for
data where no data is needed

example

Help 0-1
Display a help icon. If the end-user
presses the help icon then pop up
some useful information.

example

<String> : display a textbox, pull-down menu, list, or a group of radio buttons.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string"/>
 <String name="myMenu" label="menu" default="two">
 <Menu options="One|Two|Thee"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node89.html (1 of 5) [8/8/2003 4:03:04 PM]

B.11.1 Children allowed in String elements

<Menu> : Display a drop-down menu

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="whatever">
 <Menu options="One|Two|Thee"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node89.html (2 of 5) [8/8/2003 4:03:04 PM]

B.11.1 Children allowed in String elements

<TextArea> : Create a textbox that contains more than one line

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" default="one\ntwo\nthree">
 <TextArea width="10" height="3"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node89.html (3 of 5) [8/8/2003 4:03:04 PM]

B.11.1 Children allowed in String elements

<CustomEditor> : You can write you own customized editor.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string">
 <CustomEditor name="MyStringEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
 </String>
 </Fields>
 </Class>
</Maui>

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information
to MauiActions, custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string">
 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>
 </String>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node89.html (4 of 5) [8/8/2003 4:03:04 PM]

B.11.1 Children allowed in String elements

<Help> : Display information that may be helpful to the end-user.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string">
 <Help>
 This is helpful info.
 This is another line of helpful info.
 </Help>
 </String>
 </Fields>
 </Class>
</Maui>

Next: B.11.2 Attributes allowed in Up: B.11 Tag String Previous: B.11 Tag String

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node89.html (5 of 5) [8/8/2003 4:03:04 PM]

B.11.2 Attributes allowed in String elements

Next: B.12 Tag Array Up: B.11 Tag String Previous: B.11.1 Children allowed in

B.11.2 Attributes allowed in String elements

Attribute name Mandatory
Allowed
values

Description and
comments

Examples

name yes any legal name name for this variable example

label no any string
string to be used as a
descriptive label

example

default no any string
default value of this
variable

example

optional no true/false
indicates if a value needs
to be filled in

example

editable no true/false
indicates if the value can
be edited

example

columnWidth no an integer
gives the number of
characters that should be
displayed in the text field.

example

tooltip no any string
When the end-user moves
the mouse over the label
then display a tooltip.

example

helpMessage no any string

Display a HELP icon.
Whenever the end-user
clicks on the icon, a
helpful message pops up
on the screen.

example

visible no true or false
Is the textbox visible on
the screen.

example

mauiAction no
name of a
MauiAction.

This java class is invoked
whenever the end-user
changes the contents of
the textbox.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (1 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

insets no true or false
If true then surround the
GUI component with a lot
of white space.

example

<String> : display a textbox, pull-down menu, list, or a group of radio buttons.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

name: the name of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (2 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

label: The text that is displayed to the left of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

default: The value that is displayed inside the textbox, when the textbox first appears on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1" default="123"/>
 <String name="string2" label="string2" default="456"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (3 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

optional: If true then the end-user is not forced to insert a value into the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1" optional="true"/>
 <String name="string2" label="string2" optional="false"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (4 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

editable: If false then the end-user can not change the contents of the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1"
 label="string1"
 editable="true"
 default="123"/>
 <String name="string2"
 label="string2"
 editable="false"
 default="123"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (5 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

columnWidth: the number of characters that can fit inside the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1" columnWidth="1"/>
 <String name="string2" label="string2"/>
 <String name="string3" label="string3" columnWidth="30"/>
 </Fields>
 </Class>
</Maui>

tooltip: Assign a tooltip to the label

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string"
 toolTip="This is a tooltip"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (6 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

helpMessage: Display help

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myString" label="string"
 helpMessage="This is helpful info"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (7 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

visible: Is the textbox visible on the screen?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1"
 visible="false" default="123"/>
 <String name="string2" label="string2"
 visible="true" default="456"/>
 </Fields>
 </Class>
</Maui>

MauiAction: This Java class is invoked whenever the end-user changes the contents of the textbox

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string1"
 mauiAction="MyMauiAction"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (8 of 9) [8/8/2003 4:03:05 PM]

B.11.2 Attributes allowed in String elements

insets: Is there a lot of white space surrounding the textbox?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="string1" label="string"/>
 <String name="string2" label="string" insets="true"/>
 <String name="string3" label="string" insets="false"/>
 </Fields>
 </Class>
</Maui>

Next: B.12 Tag Array Up: B.11 Tag String Previous: B.11.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node90.html (9 of 9) [8/8/2003 4:03:05 PM]

B.12 Tag Array

Next: B.12.1 Children allowed in Up: B. Maui XML syntax Previous: B.11.2 Attributes allowed in

B.12 Tag Array
Array elements represent an array of classes

Subsections

● B.12.1 Children allowed in Array elements
● B.12.2 Attributes allowed in Array elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node91.html [8/8/2003 4:03:06 PM]

B.12.1 Children allowed in Array elements

Next: B.12.2 Attributes allowed in Up: B.12 Tag Array Previous: B.12 Tag Array

B.12.1 Children allowed in Array elements

Tag Number Description and comments Examples

Action any number
Allows for buttons to be placed
within the class editor

example

CustomEditor 0-1
Allows the Array to use a non-
standard editor.

example

Master 1
contains the template used for
adding new items

example

Contents 0-1
holds the initial contents of the
array

example

AppData 0-1
a free form block of XML used for
data where no editor is needed

example

Help 0-1
Display a help icon. If the end-user
presses the help icon then pop up
some useful information.

example

<Array>

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (1 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (2 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

<Action> : Insert a button

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (3 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

<CustomEditor> : Replace the array editor with your own custom editor

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <CustomEditor name="MyArrayEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (4 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

<Master> : If the end-user presses the ADD or INSERT button then the Master class is used fabricate a
new array element.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (5 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (6 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

<Contents> : The contents of the array when the array is first rendered on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (7 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information to
MauiActions, custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (8 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>

 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>

 </Array>
 </Fields>
 </Class>
</Maui>

<Help> : Display helpful info

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (9 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>

 <Help>
 This is helpful info.
 This if more helpful info.
 </Help>

 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (10 of 11) [8/8/2003 4:03:07 PM]

B.12.1 Children allowed in Array elements

Next: B.12.2 Attributes allowed in Up: B.12 Tag Array Previous: B.12 Tag Array

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node92.html (11 of 11) [8/8/2003 4:03:07 PM]

B.12.2 Attributes allowed in Array elements

Next: B.13 Tag Table Up: B.12 Tag Array Previous: B.12.1 Children allowed in

B.12.2 Attributes allowed in Array elements

Attribute name Mandatory
Allowed
values

Description and comments Examples

name yes
any legal
name

name for this variable example

label no any string
string to be used as a descriptive
label

example

selectionLabel no any string
The label to display next to the
selection list for the Array.

example

collapsible no true or false

The panel for this array can be
expanded and collapsed with a
toggle button. If no value is
given, collapsible is assumed to
be false.

example

beginCollapsed no true or false

If the panel is collpasible, this
will give the initial state of that
panel. By default, a collapsible
panel starts out expanded.

example

tooltip no any string
When the end-user moves the
mouse over the label then
display a tooltip.

example

helpMessage no any string

Display a HELP icon.
Whenever the end-user clicks
on the icon, a helpful message
pops up on the screen.

example

visible no true or false
Is the textbox visible on the
screen.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (1 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

<Array>

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (2 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

name: The name of the array

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (3 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

label: The text that appears above the array

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (4 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

selectionLabel: The label that appears to the left of the selection list

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array"
 selectionLabel="This is my selection label">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (5 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (6 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

collapsible: Can the end-user hide the array by collapsing the panel

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array" collapsible="true">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (7 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (8 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

beginCollapsed: Is the array panel collapsed?

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array"
 collapsible="true" beginCollapsed="true">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (9 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

tooltip: Assign a tooltip to the label

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array" toolTip="This is a tooltip">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (10 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

 </Fields>
 </Class>
</Maui>

helpMessage: Display help

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array"
 helpMessage="This is a help message">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (11 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (12 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

visible: Is the textbox visible on the screen?

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array"
 visible="false">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (13 of 14) [8/8/2003 4:03:09 PM]

B.12.2 Attributes allowed in Array elements

Next: B.13 Tag Table Up: B.12 Tag Array Previous: B.12.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node93.html (14 of 14) [8/8/2003 4:03:09 PM]

B.13 Tag Table

Next: B.13.1 Children allowed in Up: B. Maui XML syntax Previous: B.12.2 Attributes allowed in

B.13 Tag Table
Table elements represent a table composed of Strings, Integers, Doubles, Booleans, and
References.

Subsections

● B.13.1 Children allowed in Table elements
● B.13.2 Attributes allowed in Table elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node94.html [8/8/2003 4:03:09 PM]

B.13.1 Children allowed in Table elements

Next: B.13.2 Attributes allowed in Up: B.13 Tag Table Previous: B.13 Tag Table

B.13.1 Children allowed in Table elements

Tag Number Description and comments Examples

Action
any
number

Allows for buttons to be placed
within the class editor

example

CustomEditor 0-1
Allows the Table to use a non-
standard editor.

example

Header 1
contains the template used for
adding new entires

example

Entries 0-1
holds the initial contents of the
table

example

AppData 0-1
a free form block of XML used for
data where no editor is needed

example

Help 0-1
Display a help icon. If the end-user
presses the help icon then pop up
some useful information.

example

<Table>

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (1 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (2 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

<Action> : Insert a button

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (3 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

<CustomEditor> : Replace the table editor with your own custom editor

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">

 <CustomEditor name="MyTableEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>

 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (4 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

</Maui>

<Header> : If the end-user presses the ADD or INSERT button then the Header class is used fabricate a
new row in the table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (5 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

<Entries> : The contents of the table when the table is first rendered on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (6 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

 </Table>
 </Fields>
 </Class>
</Maui>

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information to
MauiActions, custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (7 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>

 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>

 </Table>
 </Fields>
 </Class>
</Maui>

<Help> : Display helpful info

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>

 <Help>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (8 of 9) [8/8/2003 4:03:10 PM]

B.13.1 Children allowed in Table elements

 This is helpful info.
 This if more helpful info.
 </Help>

 </Table>
 </Fields>
 </Class>
</Maui>

Next: B.13.2 Attributes allowed in Up: B.13 Tag Table Previous: B.13 Tag Table

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node95.html (9 of 9) [8/8/2003 4:03:10 PM]

B.13.2 Attributes allowed in Table elements

Next: B.14 Tag Reference Up: B.13 Tag Table Previous: B.13.1 Children allowed in

B.13.2 Attributes allowed in Table elements

Attribute name Mandatory
Allowed
values

Description
andExamples comments

name yes
any legal
name

name for this variable example

label no any string
string to be used as a
descriptive label

example

minEntries no an integer
specifies the minimum
number of rows to allow
in the Table

example

maxEntries no an integer
specifies the maximum
number of rows to allow
in the Table

example

fixedNumberOfEntries no an integer
specifies that the table
should contain this exact
number of rows

example

minRows no an integer
specifies the minimum
number of rows to allow
in the Table

example

maxRows no an integer
specifies the maximum
number of rows to allow
in the Table

example

fixedNumberOfRows no an integer
specifies that the table
should contain this exact
number of rows

example

collapsible no
true or
false

The panel for this table
can be expanded and
collapsed with a toggle
button. If no value is
given, collapsible is
assumed to be false.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (1 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

beginCollapsed no
true or
false

If the panel is collpasible,
this will give the initial
state of that panel. By
default, a collapsible
panel starts out expanded.

example

selectionLabel no any string
The label to display next
to the selection table of
the Table.

example

tooltip no any string
When the end-user moves
the mouse over the label
then display a tooltip.

example

helpMessage no any string

Display a HELP icon.
Whenever the end-user
clicks on the icon, a
helpful message pops up
on the screen.

example

visible no
true or
false

Is the textbox visible on
the screen.

example

<Table>

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (2 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

name: The name of the table

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (3 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

label: The text that appears above the table

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (4 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

minEntries: The smallest number of rows this table can have

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table" minEntries="2">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (5 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 </Fields>
 </Class>
</Maui>

maxEntries: The largest number of rows this table can have

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table" maxEntries="2">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (6 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

fixedNumberOfEntries: The table always contains this number of rows

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table" fixedNumberOfEntries="2">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (7 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

minRows: The smallest number of rows this table can have

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table" minRows="2">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (8 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

maxRows: The largest number of rows this table can have

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table" maxRows="2">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (9 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

fixedNumberOfRows: The table always contains this number of rows

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table" fixedNumberOfRows="2">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (10 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

collapsible: Can the end-user hide the table by collapsing the panel

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table" collapsible="true">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (11 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (12 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

beginCollapsed: Is the table panel collapsed?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table"
 collapsible="true" beginCollapsed="true">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (13 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

selectionLabel: The label that appears to the left of the table

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table"
 selectionLabel="This is my selection label">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (14 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

tooltip: Assign a tooltip to the label

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table"
 toolTip="This is a tooltip">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (15 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 </Class>
</Maui>

helpMessage: Display help

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table"
 helpMessage="This is a help message">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (16 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

visible: Is the textbox visible on the screen?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table"
 visible="false">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (17 of 18) [8/8/2003 4:03:12 PM]

B.13.2 Attributes allowed in Table elements

 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

Next: B.14 Tag Reference Up: B.13 Tag Table Previous: B.13.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node96.html (18 of 18) [8/8/2003 4:03:12 PM]

B.14 Tag Reference

Next: B.14.1 Children allowed in Up: B. Maui XML syntax Previous: B.13.2 Attributes allowed in

B.14 Tag Reference
Reference elements refers to a field entered elsewhere in the Maui GUI.

Subsections

● B.14.1 Children allowed in Reference elements
● B.14.2 Attributes allowed in Reference elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node97.html [8/8/2003 4:03:12 PM]

B.14.1 Children allowed in Reference elements

Next: B.14.2 Attributes allowed in Up: B.14 Tag Reference Previous: B.14 Tag Reference

B.14.1 Children allowed in Reference elements

Tag Number Description and comments Examples

CustomEditor 0-1
Allows the Reference to use a non-
standard editor.

example

AppData 0-1
a free form block of XML used for
data where no editor is needed

example

<Reference> : Select one choice from a collection of values (such as an array or a table).

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>

 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node98.html (1 of 3) [8/8/2003 4:03:13 PM]

B.14.1 Children allowed in Reference elements

 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>

 <Reference name="myReference" path="myArray"/>

 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node98.html (2 of 3) [8/8/2003 4:03:13 PM]

B.14.1 Children allowed in Reference elements

<CustomEditor> : Replace the array editor with your own custom editor

<Reference name="myReference" path="myArray">
 <CustomEditor name="MyReferenceEditor">
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </CustomEditor>
</Reference>

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information
to MauiActions, custom editors, and external applications.

<Reference name="myReference" path="myArray">
 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>
</Reference>

Next: B.14.2 Attributes allowed in Up: B.14 Tag Reference Previous: B.14 Tag Reference

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node98.html (3 of 3) [8/8/2003 4:03:13 PM]

B.14.2 Attributes allowed in Reference elements

Next: B.15 Tag Comment Up: B.14 Tag Reference Previous: B.14.1 Children allowed in

B.14.2 Attributes allowed in Reference elements

Attribute
name

Mandatory Allowed values
Description and
comments

Examples

name yes any legal name name for this variable example

label no any string
string to be used as a
descriptive label

example

path yes valid reference path
the path to the referenced
element

example

output no reference/dereference

indicates whether this
element will reference or
dereference the element.
If no value is given, it is
assumed to reference the
element

example

optional no true/false
indicates if a value needs
to be selected

example

insets no true or false
If true then surround the
GUI component with a
lot of white space.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node99.html (1 of 6) [8/8/2003 4:03:13 PM]

B.14.2 Attributes allowed in Reference elements

<Reference> : Select one choice from a collection of values (such as an array or a table).

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>

 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>

 <Reference name="myReference" path="myArray"/>

 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node99.html (2 of 6) [8/8/2003 4:03:13 PM]

B.14.2 Attributes allowed in Reference elements

name: The name of the reference

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Reference name="myReference" path="myArray"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node99.html (3 of 6) [8/8/2003 4:03:13 PM]

B.14.2 Attributes allowed in Reference elements

label: The text that appears to the left of the reference.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Reference name="myReference"
 path="myArray" label="my label"/>
 </Fields>
 </Class>
</Maui>

path: The name of the component (array, table, etc.) that is supplying the contents of this reference.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Reference name="myReference"
 path="myArray" label="my label"/>
 </Fields>
 </Class>
</Maui>

output: not implemented

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node99.html (4 of 6) [8/8/2003 4:03:13 PM]

B.14.2 Attributes allowed in Reference elements

optional: If true then the end-user does not have to select an entry.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Reference name="reference1" label="reference1"
 path="myArray" optional="true"/>
 <Reference name="reference2" label="reference2"
 path="myArray" optional="false"/>
 </Fields>
 </Class>
</Maui>

insets: Is there a lot of white space surrounding the pull-down menu?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node99.html (5 of 6) [8/8/2003 4:03:13 PM]

B.14.2 Attributes allowed in Reference elements

 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>

 <Reference name="reference1" path="myArray"/>
 <Reference name="reference2" path="myArray" insets="true"/>
 <Reference name="reference3" path="myArray" insets="false"/>

 </Fields>
 </Class>
</Maui>

Next: B.15 Tag Comment Up: B.14 Tag Reference Previous: B.14.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node99.html (6 of 6) [8/8/2003 4:03:13 PM]

B.15 Tag Comment

Next: B.15.1 Children allowed in Up: B. Maui XML syntax Previous: B.14.2 Attributes allowed in

B.15 Tag Comment
Comment elements will cause the content of that element to be displayed

Subsections

● B.15.1 Children allowed in Comment elements
● B.15.2 Attributes allowed in Comment elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node100.html [8/8/2003 4:03:14 PM]

B.15.1 Children allowed in Comment elements

Next: B.15.2 Attributes allowed in Up: B.15 Tag Comment Previous: B.15 Tag Comment

B.15.1 Children allowed in Comment elements

None

Next: B.15.2 Attributes allowed in Up: B.15 Tag Comment Previous: B.15 Tag Comment

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node101.html [8/8/2003 4:03:14 PM]

B.15.2 Attributes allowed in Comment elements

Next: B.16 Tag Menu Up: B.15 Tag Comment Previous: B.15.1 Children allowed in

B.15.2 Attributes allowed in Comment elements

Attribute
name

Mandatory
Allowed
values

Description and
comments

Examples

name no
any legal
name

name for this variable example

visible no true or false

If visible is true, the
content of this Comment
will be displayed in Maui.
If false, the content is not
displayed. By default,
visible is assumed to be
true.

example

border no true or false
If border is true then a
border is drawn around the
comment.

example

<Comment> : display a comment on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Comment>
 This is a comment.
 This is the 2nd line of the comment.
 </Comment>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node102.html (1 of 4) [8/8/2003 4:03:14 PM]

B.15.2 Attributes allowed in Comment elements

name: The name of the comment

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Comment name="myComment">
 This is a comment.
 This is the 2nd line of the comment.
 </Comment>
 </Fields>
 </Class>
</Maui>

visible: Is the comment visible on the screen?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Comment visible="false">Comment 1 </Comment>
 <Comment visible="true">Comment 2 </Comment>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node102.html (2 of 4) [8/8/2003 4:03:14 PM]

B.15.2 Attributes allowed in Comment elements

border: Determines if a border is drawn around the class.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Comment border="false">Comment 1 </Comment>
 <Comment border="true">Comment 2 </Comment>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node102.html (3 of 4) [8/8/2003 4:03:14 PM]

B.15.2 Attributes allowed in Comment elements

Next: B.16 Tag Menu Up: B.15 Tag Comment Previous: B.15.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node102.html (4 of 4) [8/8/2003 4:03:14 PM]

B.16 Tag Menu

Next: B.16.1 Children allowed in Up: B. Maui XML syntax Previous: B.15.2 Attributes allowed in

B.16 Tag Menu
Menu provides a options list selection for a String element

Subsections

● B.16.1 Children allowed in Menu elements
● B.16.2 Attributes allowed in Menu elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node103.html [8/8/2003 4:03:15 PM]

B.16.1 Children allowed in Menu elements

Next: B.16.2 Attributes allowed in Up: B.16 Tag Menu Previous: B.16 Tag Menu

B.16.1 Children allowed in Menu elements

None

Next: B.16.2 Attributes allowed in Up: B.16 Tag Menu Previous: B.16 Tag Menu

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node104.html [8/8/2003 4:03:15 PM]

B.16.2 Attributes allowed in Menu elements

Next: B.17 Tag Master Up: B.16 Tag Menu Previous: B.16.1 Children allowed in

B.16.2 Attributes allowed in Menu elements

Attribute
name

Mandatory
Allowed values Description and

comments
Examples

options yes

any list of strings lists all possible values
that the String can have.
The different values are
separated by pipes

example

style no
comboBox,
radioButton, list

default is combBox exmaple

rows no

positive integers Only affects radio buttons.
Specifies the Number of
rows to put the buttons in.
0 means all in one column.

exmaple

listMode no

multiple_interval,
single_interval,
single

this is to be used with lists
only. It gives three modes
in which items in it can be
selected. If multiple items
are selected they will be
separated by pipes in the
output xml.

example

mauiAction no
the name of a
java class

This java class is invoked
whenever the end-user
selects a menu item..

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node105.html (1 of 7) [8/8/2003 4:03:15 PM]

B.16.2 Attributes allowed in Menu elements

<Menu> : Display a pull-down menu, list, or a group of radio buttons.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myMenu" default="two">
 <Menu options="One|Two|Thee"/>
 </String>
 </Fields>
 </Class>
</Maui>

options: The items that appear inside the menu

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myMenu" default="two">
 <Menu options="One|Two|Thee"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node105.html (2 of 7) [8/8/2003 4:03:15 PM]

B.16.2 Attributes allowed in Menu elements

style: The menu can be displayed as a pull-down menu, group of radio buttons, or a list box.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="menu1" label="menu1">
 <Menu options="One|Two|Thee" style="comboBox"/>
 </String>
 <String name="menu2" label="menu2">
 <Menu options="One|Two|Thee" style="radioButton"/>
 </String>
 <String name="menu3" label="menu3">
 <Menu options="One|Two|Thee" style="list"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node105.html (3 of 7) [8/8/2003 4:03:15 PM]

B.16.2 Attributes allowed in Menu elements

rows: The number of rows in a group of radio buttons

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="menu1" label="menu1">
 <Menu options="One|Two|Thee|Four|Five|Six"
 style="radioButton"/>
 </String>
 <String name="menu2" label="menu2">
 <Menu options="One|Two|Thee|Four|Five|Six"
 style="radioButton" rows="2"/>
 </String>
 <String name="menu3" label="menu3">
 <Menu options="One|Two|Thee|Four|Five|Six"
 style="radioButton" rows="3"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node105.html (4 of 7) [8/8/2003 4:03:15 PM]

B.16.2 Attributes allowed in Menu elements

listMode: Do you want to allow the end-user to select more than one item in a list? If listMode is set to
multiple_level then the end-user can select more than one item. If listMode is set to single_interval or to
single then the end-user can select only one item.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="menu1" label="menu1">
 <Menu options="One|Two|Thee" style="list"/>
 </String>
 <String name="menu2" label="menu2">
 <Menu options="One|Two|Thee" style="list"
 listMode="multiple_interval"/>
 </String>
 <String name="menu3" label="menu3">
 <Menu options="One|Two|Thee" style="list"

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node105.html (5 of 7) [8/8/2003 4:03:15 PM]

B.16.2 Attributes allowed in Menu elements

 listMode="single_interval"/>
 </String>
 <String name="menu4" label="menu4">
 <Menu options="One|Two|Thee" style="list"
 listMode="single"/>
 </String>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node105.html (6 of 7) [8/8/2003 4:03:15 PM]

B.16.2 Attributes allowed in Menu elements

mauiAction: This java class is invoked whenever the end-user changes the contents of the textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <String name="myMenu" default="two">
 <Menu options="One|Two|Thee" mauiAction="myMenuAction"/>
 </String>
 </Fields>
 </Class>
</Maui>

Next: B.17 Tag Master Up: B.16 Tag Menu Previous: B.16.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node105.html (7 of 7) [8/8/2003 4:03:15 PM]

B.17 Tag Master

Next: B.17.1 Children allowed in Up: B. Maui XML syntax Previous: B.16.2 Attributes allowed in

B.17 Tag Master
Master provides the template used for all elements added to the array. There must be one and only one
child of Master to specify the template to use.

Subsections

● B.17.1 Children allowed in Master elements
● B.17.2 Attributes allowed in Master elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node106.html [8/8/2003 4:03:15 PM]

B.17.1 Children allowed in Master elements

Next: B.17.2 Attributes allowed in Up: B.17 Tag Master Previous: B.17 Tag Master

B.17.1 Children allowed in Master elements

Tag Description and comments Examples

Integer the array will contain integer variables example

String the array will contain string variables example

Double the array will contain double variables example

Boolean
the array will contain boolean
(logical) variables

example

Array the array will contain array variables example

Table the array will contain table variables example

Reference
the array will contain reference
variables

example

Comment the array will contain comments example

type_name
the array will contain class data
members of type type_name

example

Class zero or more child classes. example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (1 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Master> : Contains the GUI components that are created whenever the end-user creates a new array
element.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Class type="master" label="label">
 <Fields>
 <Integer name="integer" label="integer"/>
 </Fields>
 </Class>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (2 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Integer> : Insert an integer into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Integer name="integer" label="integer"/>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (3 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<String> : Insert a string into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <String name="string" label="string"/>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (4 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Double> :Insert a double into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Double name="double" label="double"/>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (5 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Boolean> : Insert a boolean checkbox into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Boolean name="boolean" label="boolean"/>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (6 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Array> Insert an array into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Array name="myArray" label="the array">
 <Master>
 <Class type="master" label="label">
 <Fields>
 </Fields>
 </Class>
 </Master>
 </Array>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (7 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Table> : Insert a table into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 </Table>
 </Master>
 </Array>
 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (8 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

</Maui>

<Reference> : Broken in this release of Maui. A bug report has been submitted to the Maui developers.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (9 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Comment> : Insert a comment into an array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Comment>This is a comment</Comment>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (10 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

child class

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <MyClass name="myClass" label="my class"/>
 </Master>
 </Array>
 </Fields>
 </Class>

 <Class type="MyClass">
 <Fields>
 <String name="myString" label="my string"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (11 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

<Class> : Display a child class

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Class type="MyClass">
 <Fields>
 <String name="myString" label="my string"/>
 </Fields>
 </Class>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (12 of 13) [8/8/2003 4:03:17 PM]

B.17.1 Children allowed in Master elements

Next: B.17.2 Attributes allowed in Up: B.17 Tag Master Previous: B.17 Tag Master

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node107.html (13 of 13) [8/8/2003 4:03:17 PM]

B.17.2 Attributes allowed in Master elements

Next: B.18 Tag Contents Up: B.17 Tag Master Previous: B.17.1 Children allowed in

B.17.2 Attributes allowed in Master elements

Attribute name Mandatory Allowed values Description and comments

label no any string

string to be used as a descriptive label
for the Entry. This label can contain
portions that are derived from an
element's contents.

<Master> : Contains the GUI components that are created whenever the end-user creates a new array
element.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master>
 <Class type="master" label="label">
 <Fields>
 <Integer name="integer" label="integer"/>
 </Fields>
 </Class>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node108.html (1 of 4) [8/8/2003 4:03:17 PM]

B.17.2 Attributes allowed in Master elements

label : A list contains the label of every array element.
In this example, every array element has the same label.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="this is my label">
 <Class type="master" label="label">
 <Fields>
 <Integer name="integer" label="integer"/>
 </Fields>
 </Class>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node108.html (2 of 4) [8/8/2003 4:03:17 PM]

B.17.2 Attributes allowed in Master elements

label : A list contains the label of every array element.
In this example, the label contains the contents of the
element's textbox.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$integer">
 <Class type="master" label="label">
 <Fields>
 <Integer name="integer" label="integer"/>
 </Fields>
 </Class>
 </Master>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node108.html (3 of 4) [8/8/2003 4:03:17 PM]

B.17.2 Attributes allowed in Master elements

Next: B.18 Tag Contents Up: B.17 Tag Master Previous: B.17.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node108.html (4 of 4) [8/8/2003 4:03:17 PM]

B.18 Tag Contents

Next: B.18.1 Children allowed in Up: B. Maui XML syntax Previous: B.17.2 Attributes allowed in

B.18 Tag Contents
The Contents element specifies the initial contents of an array.

Subsections

● B.18.1 Children allowed in Contents elements
● B.18.2 Attributes allowed in Contents elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node109.html [8/8/2003 4:03:18 PM]

B.18.1 Children allowed in Contents elements

Next: B.18.2 Attributes allowed in Up: B.18 Tag Contents Previous: B.18 Tag Contents

B.18.1 Children allowed in Contents elements

Tag Number Description and comments

Item any number
each Item is one of the initial
elements of the array

<Contents> : Contains one or more elements of an array.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>
 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>
 <Item>
 <Class type="row2">
 <Fields>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node110.html (1 of 4) [8/8/2003 4:03:18 PM]

B.18.1 Children allowed in Contents elements

 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>
 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node110.html (2 of 4) [8/8/2003 4:03:18 PM]

B.18.1 Children allowed in Contents elements

<Item> : the contents of one array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>
 </Master>
 <Contents>

 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>

 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>

 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node110.html (3 of 4) [8/8/2003 4:03:18 PM]

B.18.1 Children allowed in Contents elements

Next: B.18.2 Attributes allowed in Up: B.18 Tag Contents Previous: B.18 Tag Contents

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node110.html (4 of 4) [8/8/2003 4:03:18 PM]

B.18.2 Attributes allowed in Contents elements

Next: B.19 Tag Item Up: B.18 Tag Contents Previous: B.18.1 Children allowed in

B.18.2 Attributes allowed in Contents elements

None

Next: B.19 Tag Item Up: B.18 Tag Contents Previous: B.18.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node111.html [8/8/2003 4:03:18 PM]

B.19 Tag Item

Next: B.19.1 Children allowed in Up: B. Maui XML syntax Previous: B.18.2 Attributes allowed in

B.19 Tag Item
Item elements represent the initial values in an array. There must be one and only one child in Item for
the initial value.

Subsections

● B.19.1 Children allowed in Item elements
● B.19.2 Attributes allowed in Item elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node112.html [8/8/2003 4:03:18 PM]

B.19.1 Children allowed in Item elements

Next: B.19.2 Attributes allowed in Up: B.19 Tag Item Previous: B.19 Tag Item

B.19.1 Children allowed in Item elements

Tag Description and comments Examples

Integer This feature is not implemented. example

String This feature is not implemented. example

Double This feature is not implemented. example

Boolean This feature is not implemented. example

Array This feature is not implemented. example

Table This feature is not implemented. example

Reference This feature is not implemented. example

Comment This feature is not implemented. example

type_name
the initial element is a class data member of type
type_name

example

Class the initial element is a class example

<Item> : Contains the GUI components (buttons, textboxes, checkboxes) of one array element.

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Class type="master" label="label">
 <Fields>
 <String name="string"
 label="label"/>
 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node113.html (1 of 6) [8/8/2003 4:03:19 PM]

B.19.1 Children allowed in Item elements

 </Master>
 <Contents>

 <Item>
 <Class type="row1">
 <Fields>
 <String name="string"
 label="label"
 default="one"/>
 </Fields>
 </Class>
 </Item>

 <Item>
 <Class type="row2">
 <Fields>
 <String name="string"
 label="label"
 default="two"/>
 </Fields>
 </Class>
 </Item>

 </Contents>
 </Array>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node113.html (2 of 6) [8/8/2003 4:03:19 PM]

B.19.1 Children allowed in Item elements

<Integer> : This feature is not implemented.

<String> : This feature is not implemented.

<Double> : This feature is not implemented.

<Boolean> : This feature is not implemented.

<Array> : This feature is not implemented.

<Table> : This feature is not implemented.

<Reference> : This feature is not implemented.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node113.html (3 of 6) [8/8/2003 4:03:19 PM]

B.19.1 Children allowed in Item elements

<Comment> : This feature is not implemented.

child class

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Integer name="integer"
 label="label"/>
 </Master>

 <Contents>
 <Item>
 <MyClass name="myClass" label="my class"/>
 </Item>
 </Contents>

 </Array>
 </Fields>
 </Class>

 <Class type="MyClass">
 <Fields>
 <String name="myString" label="my string"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node113.html (4 of 6) [8/8/2003 4:03:19 PM]

B.19.1 Children allowed in Item elements

<Class> : Display a child class

<Maui RootClass="MyContainer">
 <Class type="MyContainer" label="the container">
 <Fields>
 <Array name="myArray" label="the array">
 <Master label="$string">
 <Integer name="integer"
 label="label"/>
 </Master>

 <Contents>
 <Item>

 <Class type="MyClass">
 <Fields>
 <String name="myString" label="my string"/>
 </Fields>
 </Class>

 </Item>
 </Contents>

 </Array>
 </Fields>
 </Class>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node113.html (5 of 6) [8/8/2003 4:03:19 PM]

B.19.1 Children allowed in Item elements

</Maui>

Next: B.19.2 Attributes allowed in Up: B.19 Tag Item Previous: B.19 Tag Item

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node113.html (6 of 6) [8/8/2003 4:03:19 PM]

B.19.2 Attributes allowed in Item elements

Next: B.20 Tag Header Up: B.19 Tag Item Previous: B.19.1 Children allowed in

B.19.2 Attributes allowed in Item elements

None

Next: B.20 Tag Header Up: B.19 Tag Item Previous: B.19.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node114.html [8/8/2003 4:03:19 PM]

B.20 Tag Header

Next: B.20.1 Children allowed in Up: B. Maui XML syntax Previous: B.19.2 Attributes allowed in

B.20 Tag Header
Header provides the template used for all entries added to the table. Each child in the Header represents
one column of the table.

Subsections

● B.20.1 Children allowed in Header elements
● B.20.2 Attributes allowed in Header elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node115.html [8/8/2003 4:03:19 PM]

B.20.1 Children allowed in Header elements

Next: B.20.2 Attributes allowed in Up: B.20 Tag Header Previous: B.20 Tag Header

B.20.1 Children allowed in Header elements

Tag Description and comments Examples

Integer
the table will contain a column of
integer variables

example

String
the table will contain a column of
string variables

example

Double
the table will contain a column of
double variables

example

Boolean
the table will contain a column of
boolean (logical) variables

example

Reference
the table will contain a column of
reference variables

example

<Header> : Contains the GUI components (buttons, textboxes, checkboxes, etc) that will be created
when the end-user creates a new row in the table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node116.html (1 of 7) [8/8/2003 4:03:20 PM]

B.20.1 Children allowed in Header elements

 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node116.html (2 of 7) [8/8/2003 4:03:20 PM]

B.20.1 Children allowed in Header elements

<Integer> : Insert an integer into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 </Header>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node116.html (3 of 7) [8/8/2003 4:03:20 PM]

B.20.1 Children allowed in Header elements

<String> : Insert a string into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <String name="Col1" label="string" />
 </Header>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node116.html (4 of 7) [8/8/2003 4:03:20 PM]

B.20.1 Children allowed in Header elements

<Double> :Insert a double into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Double name="Col1" label="double" />
 </Header>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node116.html (5 of 7) [8/8/2003 4:03:20 PM]

B.20.1 Children allowed in Header elements

<Boolean> : Insert a boolean checkbox into the array element

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Boolean name="Col1" label="boolean" />
 </Header>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node116.html (6 of 7) [8/8/2003 4:03:20 PM]

B.20.1 Children allowed in Header elements

<Reference> : Broken in this release of Maui. A bug report has been submitted to the Maui
developers.

Next: B.20.2 Attributes allowed in Up: B.20 Tag Header Previous: B.20 Tag Header

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node116.html (7 of 7) [8/8/2003 4:03:20 PM]

B.20.2 Attributes allowed in Header elements

Next: B.21 Tag Entries Up: B.20 Tag Header Previous: B.20.1 Children allowed in

B.20.2 Attributes allowed in Header elements

Attribute name Mandatory
Allowed
values

Description and
comments

Examples

name yes
any legal
name

default name for new
entries

example

label no any string not implemented example

sizing no
a list of
integers

specify the Width of the
columns in the header. This
is a list of integers
separated by pipes where
each integer gives the size
of the corresponding
column. If the sizing space
for a given column is
empty or negative, the
default Maui sizing will be
used.

example

toolTip no any string not implemented example

helpMessage no any string not implemented example

visible no
true or
false

not implemented example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node117.html (1 of 5) [8/8/2003 4:03:21 PM]

B.20.2 Attributes allowed in Header elements

<Header> : Contains the GUI components (buttons, textboxes, checkboxes, etc) that will be created
when the end-user creates a new row in the table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node117.html (2 of 5) [8/8/2003 4:03:21 PM]

B.20.2 Attributes allowed in Header elements

name: The name of the header

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 </Header>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node117.html (3 of 5) [8/8/2003 4:03:21 PM]

B.20.2 Attributes allowed in Header elements

label: (Author's Note: I will ask the developer if this attribute does anything useful)

sizing: The size of each column in pixels

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" sizing="50|100|200">
 <String name="string1" label="string1"/>
 <String name="string2" label="string2"/>
 <String name="string3" label="string3"/>
 </Header>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node117.html (4 of 5) [8/8/2003 4:03:21 PM]

B.20.2 Attributes allowed in Header elements

toolTip: (Author's Note: I will ask the developer if this attribute does anything useful)

helpMessage: (Author's Note: I will ask the developer if this attribute does anything useful)

visible: (Author's Note: I will ask the developer if this attribute does anything useful)

Next: B.21 Tag Entries Up: B.20 Tag Header Previous: B.20.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node117.html (5 of 5) [8/8/2003 4:03:21 PM]

B.21 Tag Entries

Next: B.21.1 Children allowed in Up: B. Maui XML syntax Previous: B.20.2 Attributes allowed in

B.21 Tag Entries
The Entries element specifies the initial contents of a table.

Subsections

● B.21.1 Children allowed in Entries elements
● B.21.2 Attributes allowed in Entries elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node118.html [8/8/2003 4:03:21 PM]

B.21.1 Children allowed in Entries elements

Next: B.21.2 Attributes allowed in Up: B.21 Tag Entries Previous: B.21 Tag Entries

B.21.1 Children allowed in Entries elements

Tag Number Description and comments Examples

Entry any number
each Entry is one of the initial
entries of the table

example

<Entries> : The GUI components (buttons, textboxes, checkboxes, etc) that are contained inside of a
table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node119.html (1 of 4) [8/8/2003 4:03:21 PM]

B.21.1 Children allowed in Entries elements

 </Fields>
 </Class>
</Maui>

<Entry> : The contents of a row inside of a table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node119.html (2 of 4) [8/8/2003 4:03:21 PM]

B.21.1 Children allowed in Entries elements

 <Cell field="Col3" value="one"/>
 </Entry>

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>

 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node119.html (3 of 4) [8/8/2003 4:03:21 PM]

B.21.1 Children allowed in Entries elements

Next: B.21.2 Attributes allowed in Up: B.21 Tag Entries Previous: B.21 Tag Entries

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node119.html (4 of 4) [8/8/2003 4:03:21 PM]

B.21.2 Attributes allowed in Entries elements

Next: B.22 Tag Entry Up: B.21 Tag Entries Previous: B.21.1 Children allowed in

B.21.2 Attributes allowed in Entries elements

None

Next: B.22 Tag Entry Up: B.21 Tag Entries Previous: B.21.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node120.html [8/8/2003 4:03:21 PM]

B.22 Tag Entry

Next: B.22.1 Children allowed in Up: B. Maui XML syntax Previous: B.21.2 Attributes allowed in

B.22 Tag Entry
Entry elements represent the initial values in a table.

Subsections

● B.22.1 Children allowed in Entry elements
● B.22.2 Attributes allowed in Entry elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node121.html [8/8/2003 4:03:21 PM]

B.22.1 Children allowed in Entry elements

Next: B.22.2 Attributes allowed in Up: B.22 Tag Entry Previous: B.22 Tag Entry

B.22.1 Children allowed in Entry elements

Tag Number Description and comments Examples

Cell any number
the initial contents of one individual
field in a table entry

example

<Entry> : The GUI components (buttons, textboxes, checkboxes, etc) that are in one row of a table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>

 </Entries>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node122.html (1 of 4) [8/8/2003 4:03:23 PM]

B.22.1 Children allowed in Entry elements

 </Table>
 </Fields>
 </Class>
</Maui>

<Cell> The contents of one cell in the table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>
 <Entry name="entry1">
 <Cell field="Col1" value="1"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node122.html (2 of 4) [8/8/2003 4:03:23 PM]

B.22.1 Children allowed in Entry elements

 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>
 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>
 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node122.html (3 of 4) [8/8/2003 4:03:23 PM]

B.22.1 Children allowed in Entry elements

Next: B.22.2 Attributes allowed in Up: B.22 Tag Entry Previous: B.22 Tag Entry

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node122.html (4 of 4) [8/8/2003 4:03:23 PM]

B.22.2 Attributes allowed in Entry elements

Next: B.23 Tag Cell Up: B.22 Tag Entry Previous: B.22.1 Children allowed in

B.22.2 Attributes allowed in Entry elements

Attribute
name

Mandatory
Allowed
values

Description and
comments

Examples

name no
any legal
name

the name for this entry example

label no any string not implemented example

<Entry> : The GUI components (buttons, textboxes, checkboxes, etc) that are in one row of a table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node123.html (1 of 4) [8/8/2003 4:03:24 PM]

B.22.2 Attributes allowed in Entry elements

 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>

 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node123.html (2 of 4) [8/8/2003 4:03:24 PM]

B.22.2 Attributes allowed in Entry elements

name: the name of the row

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>

 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node123.html (3 of 4) [8/8/2003 4:03:24 PM]

B.22.2 Attributes allowed in Entry elements

label: (Author's Note: I will ask the developer if this attribute does anything useful)

Next: B.23 Tag Cell Up: B.22 Tag Entry Previous: B.22.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node123.html (4 of 4) [8/8/2003 4:03:24 PM]

B.23 Tag Cell

Next: B.23.1 Children allowed in Up: B. Maui XML syntax Previous: B.22.2 Attributes allowed in

B.23 Tag Cell
Cell elements represent one initial value in a table entry.

Subsections

● B.23.1 Children allowed in Cell elements
● B.23.2 Attributes allowed in Cell elements

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node124.html [8/8/2003 4:03:24 PM]

B.23.1 Children allowed in Cell elements

Next: B.23.2 Attributes allowed in Up: B.23 Tag Cell Previous: B.23 Tag Cell

B.23.1 Children allowed in Cell elements

None

Next: B.23.2 Attributes allowed in Up: B.23 Tag Cell Previous: B.23 Tag Cell

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node125.html [8/8/2003 4:03:24 PM]

B.23.2 Attributes allowed in Cell elements

Next: B.24 Tag type_name Up: B.23 Tag Cell Previous: B.23.1 Children allowed in

B.23.2 Attributes allowed in Cell elements

Attribute
name

Mandatory
Allowed
values

Description and
comments

Examples

field yes
a column
name

the column to give an initial
value for.

example

value yes
see column
type

the initial value for the
given column.

example

<Cell> : The GUI components (buttons, textboxes, checkboxes, etc) that are in one cell of a table.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node126.html (1 of 5) [8/8/2003 4:03:24 PM]

B.23.2 Attributes allowed in Cell elements

 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

field: The name of a column.
 The contents of this cell will be placed in this column.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node126.html (2 of 5) [8/8/2003 4:03:24 PM]

B.23.2 Attributes allowed in Cell elements

 <Entry name="entry1">
 <Cell field="Col1" value="1"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one"/>
 </Entry>

 <Entry name="entry2">
 <Cell field="Col1" value="2"/>
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two"/>
 </Entry>

 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node126.html (3 of 5) [8/8/2003 4:03:24 PM]

B.23.2 Attributes allowed in Cell elements

value: The contents of one cell in a table

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Table name="MyTable" label="My table">
 <Header name="columns" label="columns">
 <Integer name="Col1" label="Integer" />
 <Boolean name="Col2" label="Boolean" />
 <String name="Col3" label="String"/>
 </Header>
 <Entries>

 <Entry name="entry1">
 <Cell field="Col1" value="1" />
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="one" />
 </Entry>

 <Entry name="entry2">
 <Cell field="Col1" value="2" />
 <Cell field="Col2" value="true"/>
 <Cell field="Col3" value="two" />
 </Entry>

 </Entries>
 </Table>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node126.html (4 of 5) [8/8/2003 4:03:24 PM]

B.23.2 Attributes allowed in Cell elements

Next: B.24 Tag type_name Up: B.23 Tag Cell Previous: B.23.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node126.html (5 of 5) [8/8/2003 4:03:24 PM]

B.24 Tag type_name

Next: B.24.1 Children allowed in Up: B. Maui XML syntax Previous: B.23.2 Attributes allowed in

B.24 Tag type_name
type_name elements are defined by a Class element where type_name is given by the type attribute of
Class.

Subsections

● B.24.1 Children allowed in type_name elements
● B.24.2 Attributes allowed in type_name elements

Next: B.24.1 Children allowed in Up: B. Maui XML syntax Previous: B.23.2 Attributes allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node127.html [8/8/2003 4:03:25 PM]

B.24.1 Children allowed in type_name elements

Next: B.24.2 Attributes allowed in Up: B.24 Tag type_name Previous: B.24 Tag type_name

B.24.1 Children allowed in type_name elements

Tag Number Description and comments Examples

Action any number
Allows for buttons to be placed within
the class editor

example

Help any string
A help icon is displayed. Whenever
the end-user clicks on the icon,
helpful text pops up on the screen.

example

CustomEditor 0-1
Allows the Class to use a non-
standard editor.

example

AppData 0-1
a free form block of XML used for
data where no editor is needed

example

child class : A class is a container that is used to hold GUI components
(buttons, textboxes, checkboxes, etc.)

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"/>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node128.html (1 of 5) [8/8/2003 4:03:25 PM]

B.24.1 Children allowed in type_name elements

<Action> : Insert a button on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child">
 <Action label="View" class="Maui.Interface.ViewAction"/>
 </MyChild>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node128.html (2 of 5) [8/8/2003 4:03:25 PM]

B.24.1 Children allowed in type_name elements

<Help> : Display helpful info on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child">
 <Help>
 This is helpful info.
 This is another line of helpful info.
 </Help>
 </MyChild>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node128.html (3 of 5) [8/8/2003 4:03:25 PM]

B.24.1 Children allowed in type_name elements

<CustomEditor> : Used to insert a custom editor into Maui

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child">
 <CustomEditor
 name="Maui.Editors.ExampleCustomEditor_BareBonesCustomEditor">
 </CustomEditor>
 </MyChild>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

<AppData> : Used to store data that you want hidden from the end-user. Also used to pass information to MauiActions,
custom editors, and external applications.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child">
 <AppData>
 <parameter1>one</parameter1>
 <parameter2>two</parameter2>
 </AppData>
 </MyChild>
 </Fields>
 </Class>
 <Class type="MyChild">

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node128.html (4 of 5) [8/8/2003 4:03:25 PM]

B.24.1 Children allowed in type_name elements

 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

Next: B.24.2 Attributes allowed in Up: B.24 Tag type_name Previous: B.24 Tag type_name

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node128.html (5 of 5) [8/8/2003 4:03:25 PM]

B.24.2 Attributes allowed in type_name elements

Up: B.24 Tag type_name Previous: B.24.1 Children allowed in

B.24.2 Attributes allowed in type_name elements

Attribute name Mandatory
Allowed
values

Description and comments Examples

name yes
any legal
name

name for this variable example

label no any string
string to be used as a
descriptive label

example

selectionLabel no any string
The label displayed next to the
subclass Selection menu if this
class has subclasses

example

collapsible no true or false

The panel for this class can be
expanded and collapsed with a
toggle button. If no value is
given, collapsible is assumed
to be false.

example

beginCollapsed no true or false

If the panel is collpasible, this
will give the initial state of that
panel. By default, a collapsible
panel starts out expanded.

example

useTab no true or false

If this is true, the panel will be
displayed in a tabbed pane
with the other class panels. If
false, it will be displayed by
itself. If there is no collapsible
attribute, useTab will default to
true. If there is a collapsible
attribute, useTab will default to
false.

example

visible no true or false
Determines if the class is
visible or invisible.

example

tooltip no any string not yet implemented example

layout no flow

If layout is set to "flow" then
the GUI components are laid
out from left to right, top to
bottom.

example

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (1 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

border no true or false
Determines if the border (that
surrounds the class) is visible
or invisible.

example

child class : A class is a container that is used to hold GUI components
(buttons, textboxes, checkboxes, etc.)

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"/>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (2 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

name: the name of the class

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"/>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

label: The label that appears above the class

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"/>
 </Fields>
 </Class>
 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (3 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

selectionLabel: if the end-user can use a pull-down menu to select a child class then this label appears to the left of
the menu.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"
 selectionLabel="Select one of these child classes">
 </MyChild>
 </Fields>
 </Class>

 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>

 <Class type="Child1" label="child 1" base="MyChild"/>
 <Class type="Child2" label="child 2" base="MyChild"/>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (4 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

collapsible: The contents of a class can be hidden by clicking on the +/- button.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child" collapsible="true"/>
 </Fields>
 </Class>

 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>

 </Class>
</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (5 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

beginCollapsed: When the class first appears on the screen, is the class collapsed or uncollapsed?

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"
 collapsible="true" beginCollapsed="true"/>
 </Fields>
 </Class>

 <Class type="MyChild">
 <Fields>
 <String name="myString" label="string"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (6 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

useTab: The end-user can select a child class by clicking on a tab

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Child1 name="child1" label="child 1" useTab="true"/>
 <Child2 name="child2" label="child 2" useTab="true"/>
 </Fields>
 </Class>

 <Class type="Child1">
 <Fields>
 <String name="string1" label="string"/>
 </Fields>
 </Class>

 <Class type="Child2">
 <Fields>
 <String name="string2" label="string"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (7 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

visible: Determines if the class is visible on the screen

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Child1 name="child1" label="child 1"
 useTab="true" visible="false"/>
 <Child2 name="child2" label="child 2"
 useTab="true" visible="true"/>
 </Fields>
 </Class>

 <Class type="Child1">
 <Fields>
 <String name="string1" label="string"/>
 </Fields>
 </Class>

 <Class type="Child2">
 <Fields>
 <String name="string2" label="string"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (8 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

tooltip: Display a tooltip

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child"
 toolTip="I am a tooltip"/>
 </Fields>
 </Class>

 <Class type="MyChild">
 <Fields>
 <String name="string" label="string"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (9 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

layout: if set to "flow" then GUI components are laid out from left-to-right, top-to-bottom.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <MyChild name="myChild" label="my child" layout="flow"/>
 </Fields>
 </Class>

 <Class type="MyChild">
 <Fields>
 <String name="string1" label="string1"/>
 <String name="string2" label="string2"/>
 <String name="string3" label="string3"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (10 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

border: Determines if a border is drawn around the class.

<Maui RootClass="MyContainer">
 <Class type="MyContainer">
 <Fields>
 <Child1 name="child1" label="child 1"
 useTab="no" border="false"/>
 <Child2 name="child2" label="child 2"
 useTab="no" border="true"/>
 </Fields>
 </Class>

 <Class type="Child1">
 <Fields>
 <String name="string1" label="string"/>
 </Fields>
 </Class>

 <Class type="Child2">
 <Fields>
 <String name="string2" label="string"/>
 </Fields>
 </Class>

</Maui>

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (11 of 12) [8/8/2003 4:03:26 PM]

B.24.2 Attributes allowed in type_name elements

Up: B.24 Tag type_name Previous: B.24.1 Children allowed in

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/node129.html (12 of 12) [8/8/2003 4:03:26 PM]

Footnotes

... package4.1
See the note on packages in Section 3.2.3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... XMLObject4.2
XMLObjects are used frequently in this chapter. See Section 3.3.1 where XMLObjects are
described.

.

.

.

.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/footnode.html (1 of 3) [8/8/2003 4:03:27 PM]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... file4.3
See Section 3.2.3 for a description of the built-in Maui Action called ReadAction

.

.

.

.

.

.

.

.

.

.

.

.

.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/footnode.html (2 of 3) [8/8/2003 4:03:27 PM]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

file:///C|/Edward/Maui/Projects/Maui/Doc/tutorials/maui/mauiTutorial/footnode.html (3 of 3) [8/8/2003 4:03:27 PM]

	Local Disk
	A Maui User's Guide
	1. Getting Started
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1.1.2 Running Maui
	2. How to Design Maui Objects
	2.1 Introduction
	2.2 The Basics
	2.3 Maui Primitives
	2.4 Classes as Fields
	2.5 Using Subclasses to Represent Choices
	2.5.1 Data Representation
	2.5.2 Appearance of Subclasses in the GUI: Tabbed Panes
	2.5.3 Labeling in the Subclass Menu
	2.6 Arrays
	2.6.1 The Master Block
	2.6.2 Other Array Options
	2.7 Tables
	2.8 References
	2.9 Maui help buttons
	2.10 Summary of Maui
	3. Actions
	3.1 Introduction
	3.2 XML for Specifying an Action
	3.2.1 Maui Compressed XML
	3.2.2 Maui Verbose XML
	3.2.3 Maui Built-In Actions
	3.3 Writing Your Own Actions
	3.3.1 The XMLObject Class
	3.3.2 Example of a Custom Maui Action
	3.3.3 Compiling Your Action
	3.3.4 Configuring Maui to Find Your Action
	3.4 Suggested Exercises
	3.5 Summary
	4. Custom Editors
	4.1 Introduction
	4.2 Using a Custom Editor: The FilenameEditor for Strings
	4.3 Writing Your Own Custom Editors
	4.3.1 The Structure of Maui Data
	4.3.2 Steps to Writing Your Own Custom Editor
	4.3.3 Example of a Maui Custom Editor
	4.3.4 Compiling Your Custom Editor
	4.3.5 Configuring Maui to Find Your Custom Editor
	4.4 Summary
	5. Configuring Maui
	5.1 Introduction
	5.2 Appearance Settings
	5.3 Services
	5.4 Paths and Packages
	5.4.1 Configuring with the Configure Maui Button
	5.4.2 The ``Do Nothing'' Configuration Method
	5.4.3 Configuring in Your XML Specification
	A. Application Example
	A.1 A Calore GUI
	A.1.1 Differences Between Text and GUI Calore Input
	A.1.2 Calore GUI Design Examples
	A.2 Text Input to Calore
	B. Maui XML syntax guide
	B.1 Tag Maui
	B.1.1 Children allowed in Maui elements
	B.1.2 Attributes allowed in Maui elements
	B.2 Tag Class
	B.2.1 Children allowed in Class elements
	B.2.2 Attributes allowed in Class elements
	B.3 Tag Import
	B.3.1 Children allowed in Import elements
	B.3.2 Attributes allowed in Import elements
	B.4 Tag Fields
	B.4.1 Children allowed in Fields elements
	B.4.2 Attributes allowed in Fields elements
	B.5 Tag AppData
	B.5.1 Children allowed in AppData elements
	B.5.2 Attributes allowed in AppData elements
	B.6 Tag Action
	B.6.1 Children allowed in Action elements
	B.6.2 Attributes allowed in Action elements
	B.7 Tag CustomEditor
	B.7.1 Children allowed in CustomEditor elements
	B.7.2 Attributes allowed in CustomEditor elements
	B.8 Tag Integer
	B.8.1 Children allowed in Integer elements
	B.8.2 Attributes allowed in Integer elements
	B.9 Tag Double
	B.9.1 Children allowed in Double elements
	B.9.2 Attributes allowed in Double elements
	B.10 Tag Boolean
	B.10.1 Children allowed in Boolean elements
	B.10.2 Attributes allowed in Boolean elements
	B.11 Tag String
	B.11.1 Children allowed in String elements
	B.11.2 Attributes allowed in String elements
	B.12 Tag Array
	B.12.1 Children allowed in Array elements
	B.12.2 Attributes allowed in Array elements
	B.13 Tag Table
	B.13.1 Children allowed in Table elements
	B.13.2 Attributes allowed in Table elements
	B.14 Tag Reference
	B.14.1 Children allowed in Reference elements
	B.14.2 Attributes allowed in Reference elements
	B.15 Tag Comment
	B.15.1 Children allowed in Comment elements
	B.15.2 Attributes allowed in Comment elements
	B.16 Tag Menu
	B.16.1 Children allowed in Menu elements
	B.16.2 Attributes allowed in Menu elements
	B.17 Tag Master
	B.17.1 Children allowed in Master elements
	B.17.2 Attributes allowed in Master elements
	B.18 Tag Contents
	B.18.1 Children allowed in Contents elements
	B.18.2 Attributes allowed in Contents elements
	B.19 Tag Item
	B.19.1 Children allowed in Item elements
	B.19.2 Attributes allowed in Item elements
	B.20 Tag Header
	B.20.1 Children allowed in Header elements
	B.20.2 Attributes allowed in Header elements
	B.21 Tag Entries
	B.21.1 Children allowed in Entries elements
	B.21.2 Attributes allowed in Entries elements
	B.22 Tag Entry
	B.22.1 Children allowed in Entry elements
	B.22.2 Attributes allowed in Entry elements
	B.23 Tag Cell
	B.23.1 Children allowed in Cell elements
	B.23.2 Attributes allowed in Cell elements
	B.24 Tag type_name
	B.24.1 Children allowed in type_name elements
	B.24.2 Attributes allowed in type_name elements
	Footnotes

